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Abstract: Radiofrequency ablation (RFA) is being used as one of the minimally invasive 
treatments for unresectable primary and metastatic liver tumours. The variables identified to have 
significant impact on RF heating include electrical conductivity of the tumour and surrounding 
tissue, thermal conductivity of tissue, tissue perfusion and RF generator output. These constitute 
a dynamic and complex matter that makes it difficult to achieve an optimal RFA in clinical 
practice. This study was intended to propose a specialised three dimensional (3D) finite element 
modelling in order to develop a fast analysis tool for clinicians to optimise RFA parameters and 
to predict the ablation outcomes. 
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1 Introduction 

Primary and secondary hepatic cancers are among the most 
commonly encountered malignancies in clinic with annually 
over one million new cases throughout the world. Surgical 
resection is presently the first choice of treatment for 
resectable primary and metastatic liver tumours. However, it 
is not applicable in many patients due to multifocal disease, 
inadequate functional hepatic reserve, or comorbidity. 
Radiofrequency ablation (RFA) has emerged as a minimally 
invasive therapy for unresectable liver tumours by means of 
heating tumour cells above a lethal threshold (around 50°C). 
Typically, during a RFA session, an electrode is introduced 
into the tumour. An electrical alternating current (AC) flows  
 

from the electrode through the tissues back to the ground 
pad. Both electrode and ground pad are connected to a 
generator (Figure 1). The tissue around the electrode is 
coagulated due to the heat produced by the electrical 
resistance. The frequency of current is in the range of 
medium wave (20 kHz < RF < 20 MHz), more specifically 
around 500 kHz. It is high enough to cause molecular 
frictional heat without stimulating neuromuscular reaction 
and electrolysis and low enough to confine energy 
transmission to a more controllable tissue mass without 
generating excessive radiation. AC stronger than 100 mA at 
a lower frequency of 50 Hz (household mains electricity) is 
known to cause fatal electrocution and ventricular 
fibrillation (Ni et al., 2005). 
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Figure 1 RFA in a monopolar mode (see online version for 
colours) 

 

In practice, the positioning of the electrode tip in tumour is 
generally guided by an imaging modality such as 
ultrasound, computed tomography (CT) or magnetic 
resonance imaging (MRI). Because of respiratory 
movement of diaphragm, the change of liver position may 
be up to 3–5 cm. Hence, the positioning of the electrode tip 
often requires experience of the interventionalists. 

To date, monitoring of the coagulation zone during the 
RFA procedure still remains a challenging issue under 
intense research. In case of ultrasound, the steam bubbles 
create a hyperechogenic cloud, obscuring the tumour and 
preventing correct monitoring; in case of CT, the soft tissue 
contrast is insufficient to distinguish viable and dead tissues; 
while in case of MRI, the interference between 
radiofrequency current and magnetic field makes the 
monitoring difficult or impossible. For these reasons, 
usually the clinical results cannot be properly evaluated 
during the RFA procedure, but only afterwards. After RFA, 
the killed tumour cells are gradually replaced by fibrosis 
and scar tissue. The treated tissue shrinks over the period of 
a few months. For instance, a coagulated 5 cm zone may be 
shrunk to as small as 2 cm. 

The procedure as depicted in Figure 1 is called 
monopolar mode of RFA. It is characterised by the ground 
pad being pasted on patient’s skin. RF current flows back 
and forth between the electrode and the ground pad. Despite 
its advantageous simplicity, the monopolar mode of RFA 
procedure has some drawbacks: the skin may be burned 
along the edges of the ground pad, the heat is concentric 
immediately adjacent to the electrode, leading to rapid 
charring and power shutoff. To overcome these drawbacks, 
the bipolar mode of RFA has been developed, in which a 
second parallel electrode is used instead of the ground pad. 
Besides, many other techniques for improvement have been 
developed, such as the expendable electrode, the cooled 
electrode (cooling water is circulated inside electrode), the 
wet electrode (saline is infused from inside of electrode to 
surrounding issue) and the saline-enhanced RFA (saline is 
directly injected into the tissue near the electrode tip). A 
detailed description of these RFA techniques may be found 
elsewhere (Mulier et al., 2005). 

In principle, RFA may involve multidisciplinary 
sciences, e.g., the electricity, the thermal transfer and fluid 
mechanics (blood flow in vessels and seepage of saline 
through tissue). The variables identified to have significant 
impact on RF heating include electrical conductivity of the 
tumour and surrounding tissue, thermal conductivity of 
tissue, tissue perfusion and RF generator output. The  
 

response of liver and tumour tissues to the thermal effect 
depends upon several factors including tissue material 
properties, ablation duration, temperature- or power-control 
mode of ablation, tumour location and the electrode 
geometry. 

Since hepatic RFA technique is relatively new, the high 
local recurrence rates might be due to inadequate electrode 
designs, placements or overheating of the tissue in close 
proximity to the electrode. These factors may contribute to 
incomplete destruction of tumour cells. Therefore, computer 
modelling is unquestionably useful for optimising the RFA 
procedures in clinical practice. 

Although computer modelling, in most cases, is based 
on numerical methods such as finite element methods and 
finite difference methods, analytical solutions may give 
fundamental insight on the very mathematical and physical 
nature of RFA. We have found in the literature three 
analytical solutions: the temperature distribution due to a 
cylindrical electrode of finite length in an infinite medium 
(Cheng et al., 1998), a straight segment of electrode 
embedded in a box of finite size (Johnson and Saidel, 2002) 
and a point source of electric current in an infinite medium 
(Jiang et al., 2007). Because of difficulty to find analytical 
solutions for real RFA problems, much more efforts have 
been devoted to numerical solutions. A 3D finite element 
analysis for monopolar RFA with the expendable electrode 
has been reported (Tungjitkusolmun et al., 2002). The study 
was extended to bipolar RFA (Haemmerich et al., 2001) 
which was further extended to take into account blood 
vessels close to electrodes with assumed fully developed 
flow velocity (Haemmerich et al., 2003a). Cooling effect in 
RFA with cooled electrodes was studied with an 
asymmetrical model (Haemmerich et al., 2003b). An 
Arrhenius tissue damage model, which considers the 
temperature history, was used to calculate thermal dose 
within the tissue to compare with the RFA lesion boundaries 
determined by the 50°C isotherm. It has been found that the 
50°C isotherm predicted the lesion with acceptable accuracy 
(Haemmerich et al., 2003c). In a study where the 
temperature controlled RFA was simulated, the authors 
implemented a control algorithm for a proportional-integral 
(PI) controller, a commonly used controller type, in a C++ 
program to change the applied voltage between the time 
steps. The controller ran together with ABAQUS 
(Haemmerich and Webster, 2005). A finite element analysis 
on RFA using a temperature-dependent conductivity of a 
sodium chloride solution has been performed. It is assumed 
that the temperature-dependent behaviour of liver tissue is 
similar to that of an equivalent sodium chloride solution. A 
slightly non-linear behaviour due to two way-coupling of 
electricity and thermal fields has been observed (Chang, 
2003). With finite element modelling, effects on RFA by 
changing the electrical conductivity, the thermal 
conductivity, the perfusion and the generator power has 
been studied (Liu et al, 2005). Three-dimensional blood 
flow through a real porcine arterial model reconstructed 
from MRI images has been computed. Navier-Stokes 
equations together with the energy equation within the 
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artery were then solved with the FEM. Instead of the 
resistive heating, Gaussian-distributed RF heat source was 
placed nearby the artery (Hariharan et al., 2007). A first 
attention has been given to the simulation of the saline 
infiltration effect in RFA in which the saline infusion in 
tissue was not computed but its consequence on the change 
in the electrical conductivity of tissue was directly assumed 
(Berjano et al., 2006). Thereafter, in a more rigorous study, 
Darcy’s flow in porous medium was used to model the 
saline infiltration in tissue. The computed velocity of the 
saline infiltration is then introduced in the heat convective 
term in the energy equation (Barauskasa et al., 2008). 

The above cited studies demonstrate a clear progress in 
mathematical modelling of RFA. More and more factors 
influencing RFA have been taken into account at the price 
of increasing complexity of the analysis. Besides, these 
studies relied on finite element codes of general purpose 
such as PATRAN, ABAQUS, FEMLAB or COMSOL. To 
use these codes, long-term special training is necessary even 
for people of good background in physics or mathematics or 
engineering. The use of these finite element codes of 
general purpose would become undoubtedly more 
challenging for RFA clinicians. On the other hand, they do 
need a tool to optimise the RFA process and to predict 
clinical results. 

Johnson and Saidel followed this line and proposed a 
semi-analytical model (Johnson and Saidel, 2002). Although 
their model worked very fast, from a few seconds to a few 
minutes using a PC, it is limited to the monopolar RFA and 
to very limited geometry of tissue and of electrodes. The 
limitations of Johnson’s model may be easily overcome 
with FEM. Of course, as compared with his semi-analytical 
model, FEM needs more computational time and resources. 
But, with rapid progress in computer technology, it is now 
possible to obtain finite element solutions of realistic RFA 
problem within a few minutes or, in a very near future, 
within a few seconds. It is in this perspective view that we 
propose in this study a specific finite element formulation 
for fast analysis of RFA. 

2 Formulation of 3D FEM for RFA 

2.1 Governing equations  

RFA operates between 460–550 kHz. At these frequencies, 
the wavelength is about 600 metres. The inter-polar distance 
is in order of one meter in case of monopolar RFA or a few 
centimetres in case of bipolar RFA.  The wavelength of RF 
current is thus two to four orders of magnitude longer than 
inter-polar distance. Therefore, the ablation probe dissipates 
the majority of its energy through electrical conduction and 
not capacitive coupling. We may thus solve the electric 
potential by using Laplace’s equation in assuming a  
quasi-static electrical conduction model. 

2 2 2

2 2 2
V V V 0

x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (1) 

where V is the electric potential (volts). It was assumed that 
tissues may be considered as a homogeneous medium with 
constant electric and thermal conductivities. 

Heat transfer in tissue is governed by the so-called 
bioheat equation 
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where ρ is the density (kg/m3), c is the heat capacity  
(J/kg-K), k denotes constant heat conduction coefficients 
(W/K-m). ρb is the density of blood, Cb is the heat capacity 
of blood, ω is the blood perfusion coefficient, Tamb is the 
ambient temperature and Qm is the metabolic heat source 
term. In equation (2), the most important heat source is due 
to the scalar product, j ⋅ E. It represents the Joule heating in 
which j denotes the current density vector (A/m2) and E the 
electricity field density vector (V/m). In this study, the Joule 
heat source is taken into account while the blood perfusion 
and the metabolic heat source term are neglected. In this 
case, the bioheat equation (2) is reduced to that one may 
encounter in thermal-electric analysis: 
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The electricity field density E is equal to the negative 
gradient of the potential V: 

V V VV
x y z
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E  (4) 

The current density j is related to the electric field density 
by 

=
σ
Ej  (5) 

in which σ is the electric resistivity (Ω/m). 
The source term due to Joule heating may be computed 

as 

22 21 V V Vq
x y z
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As the electric potential V appears in the heat source term of 
the thermal equation (3), the temperature T is influenced by 
the electric potential. However, the electric potential is not 
influenced by the temperature as no temperature appears in 
equation (1). This one-way coupling is a consequence of 
constant electric parameters. If electric parameters vary in 
function of temperature, the temperature change will lead to 
change in the electric parameters which results in the 
electric potential change. Equation (1) and equation (3) will 
be then fully coupled. This case has been discussed in 
(Chang, 2003). 
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2.2 Weak forms of governing equations 

Finite element methods are based on weak forms of partial 
differential equations. The weak form of equation (1) 
defined on the domain of an element, Ωe, may be written as 

e

2 2 2

2 2 2
V V V d 0

x y z
Ω

⎡ ⎤∂ ∂ ∂
φ + + Ω =⎢ ⎥
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in which φ  is an arbitrary test function. Similarly, the weak 
form of equation (3) defined on Ωe may be written as 

e
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In order to reduce the order of differentiation on the field 
variables V and T, the above two weak forms of partial 
differential equations may be transformed with the 
following theorem of divergence: 
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in which F and G are two arbitrary differentiable functions 
of first order, Ω and Γ are domain and its boundary 
respectively, n is the outward normal direction of boundary 
Γ. 

The application of the theorem of divergence to equation 
(7) leads to: 
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Similarly, applying the theorem of divergence to equation 
(8), one obtained: 
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2.3 Stiffness matrices of finite elements 

A first-order tetrahedral element of four nodes, as depicted 
in Figure 2, is to be developed hereafter. 

Figure 2 Tetrahedral element 

 

The finite element method approximates equations (10) and 
(11) by substitution of field variables, V and T, with help of 
interpolation functions within element. For the tetrahedral 
element of four nodes, the field value at any point inside the 
element may be interpolated with field values at four 
element vertices. This may be expressed as the following 
equations in which Vi and Ti (i = 1, 2, 3, 4) are potential and 
temperature values at element vertices, φ1, φ2, φ3 and φ4 are 
interpolation functions. 

4

i i
i 1

V V V
=

= φ⋅ = φ∑  (12) 

4

i i
i 1

T T T
=

= φ⋅ = φ∑  (13) 
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ξ, η and ζ are called intrinsic coordinates. Their values vary 
between 0 and 1. 

In equations (12) and (13), we have used deliberatively 
the same symbol, φ, as used to denote the test function in 
the weak forms, equations (10) and (11). This is because we 
actually use the same functions for both the interpolation 
and the test functions. Finite element formulations using the 
same functions for the interpolation and the test functions 
are called the Galerkin method. It leads to a symmetrical 
stiffness matrix. 

Substituting V, T and in equations (10) and (11) with 
their expressions given in equations (12), (13) and (14), we 
obtain following two approximate (due to the interpolation) 
piecewise weak forms in which subscribe indices i = 1..4,  
j = 1..4, k = 1..3 and the Einstein summation convention is 
applied. 
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In equations (15) and (16), integrals 
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will lead to two 4 × 4 matrices which are called stiffness 
matrices. 

2.4 Analytical evaluation of stiffness matrices 

Stiffness matrices are usually evaluated with Gauss 
quadrature. However, for the purpose of computational 
efficiency and accuracy, analytical expressions of stiffness 
matrices are to be deduced in this study. This is  
possible because the integral functions in equations (17)  
and (18) are constant. To prove this, it is sufficient to show 
that derivatives of the interpolation function with reference 
to coordinates (letting x = x1, y = x2, z = x3) are constant, 
i.e., 

i

k
 constant

x
∂φ

=
∂

 (19) 

Notice that the interpolation functions are defined in 
function of local coordinate ξ, η and ζ in equation (14). 
Derivatives of interpolation function with reference to  
local coordinate, ξ, η and ζ, are related to that with reference 
to global coordinates, x, y and z by the following 
relationship: 
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in which J is the Jacobian matrix defined as: 
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By using the isoparametric element (interpolation  
function = shape function), we assume that coordinates at 
any point inside element may be interpolated in the same 
way as the interpolation of the field variables, i.e., 
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Substitution of equation (22) into equation (21) leads to 
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The Jacobian matrix is thus constant as its elements are only 
formed with nodal coordinates of the finite element mesh 
which are given constant data. Solving equation (20) for 
derivatives of interpolation functions with reference to 
global coordinates, we obtain 

ii

1Ti i

ii

x

J
y

z

−

∂φ⎧ ⎫⎧ ⎫∂φ
⎪ ⎪⎪ ⎪ ∂ξ∂ ⎪ ⎪⎪ ⎪
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⎪ ⎪ ⎪ ⎪

∂ς∂⎩ ⎭ ⎩ ⎭

 (24) 

where [JT]–1 denotes the inverse of the transpose of the 
Jacobian matrix. As the Jacobian matrix is constant, the 
inverse matrix, [JT]–1, is obviously constant. Hence, 
derivatives of interpolation functions with reference to 
global coordinates given in equation (22) are constant. 
Consequently, we can move those derivatives out of integral 
operator in equations (17): 

e

j ji i
v e

k k k k
K d Vol

x x x x
Ω

∂φ ∂φ∂φ ∂φ
= Ω =
∂ ∂ ∂ ∂∫  (25) 

in which Vol denotes the element volume. The volume of a 
tetrahedral element is equal to the sixth of Jacobian: 

J
Vol

6
=  (26) 

Similarly, the stiffness matrix in equation (18) is equal to 

e

j ji i
T e

k k k k
K k d k Vol

x x x x
Ω

∂φ ∂φ∂φ ∂φ
= Ω =

∂ ∂ ∂ ∂∫  (27) 

To evaluate derivatives of interpolation functions with 
reference to global coordinates as given in equation (24), we 
need to evaluate the inverse matrix, [JT]–1 and derivatives of 
interpolation functions with reference to local coordinates. 
The latter is straightforward as interpolation functions are 
defined in local coordinates, see equation (14). The former 
may be evaluated by using the standard mathematical 
definition of the inverse matrix: 
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14 24 341T
14 24 34T

14 24 34
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14 24 34

14 24 34

X X X
1J Y Y Y
J Z Z Z
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1 Y Y Y
J
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−
⎡ ⎤
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (28) 

in which X14 denotes the cofactor of element (x1-x4) in J and 
so on. We have substituted the determinant, TJ ,  with 

Jacobian, J ,  as they are equal. Cofactors may be computed 
with the following relationships. 

j 4 k 4
i4

j 4 k 4

y y y y
X

z z z z

− −
=

− −
 (29) 

j 4 k 4
i4

j 4 k 4

z z z z
Y

x x x x

− −
=

− −
 (30) 

4k4j

4k4j
4i yyyy

xxxx
Z

−−
−−

=  (31) 

The mutation of indices follows the order as depicted in 
Figure 3. For instance, if i = 1, then j = 2 and k = 3; if i = 2, 
then j = 3 and k = 1; if i = 3, then j = 1 and k = 2 and so on. 
Substituting the above inverse matrix into equation (24), we 
obtained, in a matrix form, derivatives of interpolation 
functions with reference to global coordinates as followings: 

Figure 3 Mutation of element indices 
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 (32) 

2.5 Analytical evaluation of the heat source term due 
to Joule effect 

When only Joule heating is taken into account in the bioheat 
equation, the heat source term in the weak form, equation 
(16), may be evaluated analytically within a tetrahedral 
element. 

( )
e e

Joule i e i eI qd d
Ω Ω

= φ Ω = ϕ ⋅ Ω∫ ∫ j E  (33) 

In a first-order tetrahedral element, the potential is in linear 
function of coordinates and the potential gradient is 
constant. Consequently, according to equations (5) and (6), 
both the current density j and the electricity field density E 
are constant. They may be then moved out the integral 
operator. 

( )
e

Joule i eI d
Ω

= ⋅ φ Ω∫j E  (34) 

The remaining integral can be evaluated analytically as 
below: 

e

1 1 1
i e i

0 0 0

1 1 1
i

0 0 0

d J d d d

J d d d

−ς −η−ς

Ω
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 (35) 

It has been found in this study the following extreme simple 
value of the integral in the above equation: 

1 1 1
i

0 0 0

1d d d ,i 1 4
24

−ς −η−ς
φ ξ η ς ≡ =∫ ∫ ∫  (36) 

Hence, in combining this result together with equation (35), 
we have found the heat source term due to Joule effect in 
equation (33) equal to 

( ) ( )Joule
1 VolI J
24 4

= ⋅ = ⋅j E j E  (37) 

Recall that the product, j ⋅ E, has been given in equation (6). 

2.6 Time matching 

The temporary behaviour of RFA is dealt with the term 
containing the partial derivative of temperature with 
reference to time in the weak form equation (16), i.e., the 
term: 
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in which Me is called the mass matrix defined as: 
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The mass matrix may be evaluated in the same way as in 
equation (34): 

[ ]
1

1 1 1 2
e 1 2 3 4

0 0 0 3

4

M c J d d d
−ς −η−ς

φ⎧ ⎫
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∫ ∫ ∫  (40) 

Substituting interpolation functions defined in equation (14) 
into (40) and evaluating all ten different integrals, we 
obtained 

e

2 1 1 1
1 2 1 1c VolM
1 1 2 120
1 1 1 2

⎡ ⎤
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⎢ ⎥
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 (41) 

For some reasons unknown to the authors up to now, this 
mass matrix may result in negative temperature, although 
correct theoretically. Hence, it is not used in author’s 
program. Instead, the following lumped mass is used which 
is obtained with the so called row-sum technique (Hughes, 
1987) consisting in summing the elements in each row and 
lumping on the diagonal and vanishing the off-diagonal 
elements. 

e
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 (42) 

Time marching 

Denoting time at nth step by tn, time at (n – 1)th step by  
tn – 1, time increment from tn – 1 to tn by ntΔ , we have 

n n 1 nt t t−= + Δ  (43) 

The time derivative of temperature at node i at nth time step 
may be approximated by the difference: 

n 1 n n
i i i i

n n

T T T dT
t t t

+∂ −
≈ =

∂ Δ Δ
 (44) 

in which superscripts of T denote time steps while 
subscripts of  T stand for nodal numbers. Let us denote 
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in which the term, ∫
Γ

Γ
∂
∂

φ
e

ed
n
T , disappeared in the final 

expression because on the boundary Γ, the normal gradient 

of temperature, T ,
n
∂
∂

 is generally prescribed to be zero and 

on interfaces between elements, its resultant is zero. 
Equation (16) may be rewritten in matrix form as following 
in which the stiffness KT has been given in equation (27). 
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 (46) 

Solving the above equation for time derivatives, we express 
time derivatives of temperature in function of temperature. 
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 (47) 

Furthermore, on the other hand, time derivatives may be 
approximated with the following formula derived from the 
interpolation theory [Hughes, (1987), p.460]. 
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 (48) 

in which θ is a parameter varying in the interval [0, 1]. In 
the present work, θ is equal to 0.5, which corresponds to 
Crank-Nicolson’s method. Substituting time derivatives 
with time differentials as defined in equation (44) and 
combining equations (47) and (48), we obtain the following 
equation for the solution of temperature at (n + 1)th time 
step with known values of temperature and of the source 
term at nth time step. 
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This is an implicit time matching scheme. 

3 Test examples 

Finite element formulas developed in foregoing sections 
have been implemented in C++. It will be added with a 
graphic user interface, an automatic mesh generator and a 
postprocessor. All will be extremely specialised for 
clinicians. The solver for the system of linear equations is 
based on the LU decomposition and the frontal method. The 
resulted program is named as RAFEM – Radiofrequency 
Ablation Finite Element Method. A free version of C++ 
compiler, Dev-C++ 5 Beta 9.2 (4.9.9.2) for Windows, is 
adopted. The following two examples are tested. 

3.1 Static analysis 

A source of current which has the potential of 51 volts is 
applied to the centre of a sphere. The sphere has radius of  
1 metre. On its surface are applied the potential of 1 volt 
and the temperature of 37°C. Material data of the sphere as 
shown in Table 1 are the same as that of liver, taken from 
literatures (Tungjitkusolmun et al., 2002). 

We need to determine the potential and the temperature 
fields in the sphere. Due to the symmetry, only an eighth of 
the sphere is analysed. The finite element mesh is shown in 
Figure 4, which is composed of 2,286 tetrahedral elements 
and of 595 nodes. 

Table 1 Thermal and electrical properties of liver 

Name Symbol Unity Value 

Density ρ kg/m3 1,060 
Specific heat C J/kg·K 3,600 
Heat conductivity k W/m·K 0.512 
Resistivity σ Ω·m 3.003 

Figure 4 Finite element mesh: due to the symmetry, only an 8th 
sphere needed to be dicretised (see online version for 
colours) 

 
Note: Boundary conditions defined at the centre and on 

the sphere surface. 

Computational results of potential and temperature against 
sphere radius are compared in Table 2. 

Table 2 Comparison of results of this work with ANSYS 

ANSYS  This work Node x = r 
(mm) V (Volt) T (°C)  V (Volt) T(°C) 

4 0.0 51.0 610.58  51.0 610.58 
585 17 12.373 369.11  12.373 369.11 
553 33 6.7431 213.00  6.7431 213.00 
512 50 4.7968 155.52  4.7967 155.52 
510 66 3.7932 125.14  3.7932 125.14 
494 99 2.8096 94.720  2.8096 94.720 
479 132 2.3240 79.434  2.3240 79.434 
58 198 1.8071 63.019  1.8071 63.018 
57 264 1.5697 55.408  1.5697 55.407 
56 405 1.3346 47.837  1.3346 47.837 

It can be seen that results given by RAFEM are almost 
identical to that by ANSYS. Only three numbers (in italics) 
are different in the fifth digit. This very slight difference 
may be explained by the fact that RAFEM uses the simple 
precision for real numbers (the type ‘float’ in C++) while 
ANSYS uses the double precision. 

Curves of the potential and the temperature values 
against radius are drawn in Figures 5 and 6 respectively. 

Figure 5 Voltage along radius (see online version for colours) 
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It can be observed that both potential and temperature have 
a sharp concentration around the sphere centre, i.e., when  
r → 0. The temperature value of 610.58°C at the centre is 
actually an approximation by the finite element computation 
to the theoretical infinite value at that point. With 
polynomial functions as the interpolation function, finite 
elements can only give limited values. 

Based on these results, we can conclude that the 
formulation and the implementation of tetrahedral elements 
as presented in previous sections are correct for the RFA 
static analysis. We need now to check the dynamic part, i.e., 
time matching. 

3.2 Dynamic analysis 

All real RFA problems are dynamic ones because real RFA 
procedures are limited in time, generally 12 to 30 minutes. 
Let us consider the sphere in the previous section as a 
dynamic problem and compute RFA procedure time up to 
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30 minutes. Temperature results along x-axis of this work 
are compared in Table 3 with that obtained with ANSYS. 
The two solutions are identical except at node 553 where 
there is a difference of 0.0016%. This is an excellent 
indication that RAFEM works correctly for dynamic RFA 
analysis. The static solution corresponds to the infinite time. 
In Figure 7 are drawn two curves of temperature: one 
corresponds to temperature at 30 minutes (dynamic 
solution), the other is the static solution which corresponds 
actually to the infinite time. It can be observed that heat 
transfer in liver material is quite slow: after 30 minutes of 
RFA procedure, high temperature zone is still confined 
nearby the sphere centre. 

Table 3 Comparison of temperature of dynamic analysis 

Temperature (°C) 
Node 

x = r (mm) 

ANSYS This work 

4 0.0 396.51 396.51 
585 17 177.87 177.87 
553 33 63.122 63.123 
512 50 42.055 42.055 
510 66 37.970 37.970 
494 99 37.076 37.076 
479 132 37.021 37.021 
58 198 37.005 37.005 
57 264 37.001 37.001 
56 405 37.000 37.000 

Figure 6 Temperature along radius (see online version for 
colours) 
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Figure 7 Comparison of temperature along radius of static and 
dynamic analysis (see online version for colours) 
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4 Discussion and conclusions 

A finite element method specialised for RFA has been 
formulated in this study. By ‘specialised’, it means the 
simplicity and the robustness. These come from the fact that 
the method relies exclusively on linear tetrahedral element 
for field variables. This is feasible because RFA has an 
intrinsic feature: the thermal transfer in solid medium, 
which is relatively simple task with finite element methods. 
Besides, we are focused on a ‘simple’ objective: offer to 
clinicians a tool for qualitative prediction of RFA in routine 
practices. The robustness of the method relies on analytical 
integration of the stiffness matrix and Joule heat source 
term, as well as the frontal method for the solution of the 
system of linear equations. The LU decomposition is used 
so that in the time marching, only back substitutions are 
needed. To solve the two test examples, we used a Laptop 
of following characteristics: Intel Core 2 Duo CPU, T7700, 
2.40 GHz, 3.5 GB of RAM. The CPU time for the dynamic 
RFA on the sphere (595 nodes and 2,286 elements) was 
about five seconds. Further reduction of CPU time is 
possible by using a solver more efficient than the classical 
frontal method, element-by-element time matching 
(Hughes, 1987), etc. As a future research, the formulation 
presented in this study may be extended to include 
equations necessary for describing the infusion and the 
perfusion of fluid in liver tissue and blood vessels. 
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