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Abstract

As an alternative to standard surgical resection for the
treatment of malignant tumors, radiofrequency ablation
(RFA) has rapidly evolved into the most popular mini-
mally invasive therapy. To help readers gain the relevant
background knowledge and to better understand the
other reviews in this Feature Section on the clinical
applications of RFA in different abdominal organs, the
present report covers the general aspects of RFA. After
an introduction, we present a simple definition of the
energy applied during RFA, a brief historical review
of its technical evolution, and an explanation of the
mechanism of action of RFA. These basic discussions
are substantiated with descriptions of RFA equipment
including those commercially available and those under
preclinical development. The size and geometry of in-
duced lesions in relation to RFA efficacy and side effects
are discussed. The unique pathophysiologic process of
thermal tissue damage and the corresponding histomor-
phologic manifestations after RFA are detailed and
cross-referenced with the findings in the current litera-
ture. The crucial role of imaging technology during and
after RFA is also addressed, including some promising
new developments. This report finishes with a summary
of the key messages and a perspective on further tech-
nologic refinements and identifies some specific priorities.
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Malignant neoplasm remains one of the most life-
threatening challenges worldwide. Among conventional

therapies, radiotherapy and chemotherapy interfere with
the metabolic processes, such that malignant cells (and
normal cells) are injured or die slowly, leaving ample
chance for tumor recurrence and adverse systemic side
effects. They are generally regarded as palliative thera-
pies aimed at slowing tumor growth and extending sur-
vival. Until recently, the only curative option for patients
who had malignant tumors has been radical surgery,
which, under certain circumstances, may promptly and
completely remove all the tumor cells from an otherwise
healthy body and thus cure this deadly disease. Unfor-
tunately, only a small proportion of patients who have
cancer can benefit from surgical eradication because of
unfavorable tumor location, staging or extent, limited
organ functional reserve, and/or high operative risk. To
seek breakthroughs in this context, a series of minimally
invasive tumor ablation techniques have been developed.
The ultimate goal is ‘‘one applicator insertion, one epi-
sode of energy delivery in one outpatient session result-
ing in cure.’’ Instead of excising the entire tumor from
the patient as in standard surgery, these new therapies
instantaneously kill the tumor in situ by localized injec-
tion of chemicals such as ethanol and acetic acid or by
intratumoral delivery of lethal energies to freeze or heat
the tumor as in cryotherapy or thermotherapy. Whether
a minimally invasive technique can achieve complete
control of local disease depends largely on whether it can
satisfy the same eradication principle the same way as
surgery for a margin-negative resection, i.e., destroy the
entire tumor plus at least a 10-mm peritumoral margin.
Radiofrequency ablation (RFA) is preferred over other
heat-mediated modalities such as interstitial laser ther-
motherapy and microwave coagulation because of its low
invasiveness, simplicity, favorable cost effectiveness, and
especially the potential for further refinement. The
present report provides an overview on the more basicCorrespondence to: Y. Ni; email: yicheng.ni@med.kuleuven.ac.be
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aspects of RFA as background information to the other
more clinically oriented reviews in this Feature Section of
Abdominal Imaging. After this general introduction, we
present a straightforward definition of the energy applied
in RFA, a brief historical review of the technical evolu-
tion, and a simple explanation about the mechanisms of
action. These basic definitions are substantiated with a
description of equipment used for RFA, including those
commercially available and those under preclinical
development. The unique pathophysiologic process of
thermal tissue damage and the corresponding histomor-
phologic manifestations after RFA are detailed and
cross-referenced with the literature. The crucial role of
imaging technology in RFA is also addressed, including
some promising developments. The report finishes with a
summary of the key messages and a perspective on fur-
ther technologic refinement.

Definition of the energy used for RFA

Radiofrequency (RF) is an electromagnetic wave fre-
quency between audio and infrared that ranges from
approximately 104 to 3 · 1012 Hz. RFA can be defined as
destruction of biological tissues by using electricity from
an unmodulated, sinusoidal wave, alternating current
(AC) at an electromagnetic frequency that falls well into
the range characteristic of radio broadcasting signals
(e.g., 30–300 KHz for long wave, 300–3000 KHz for
medium wave, and 3–30 MHz for short wave), but
preferably around 5 · 105 Hz, or 500 KHz. This fre-
quency is in the range of medium wave, i.e., high enough
(>20 KHz) to cause molecular frictional heating without
stimulating neuromuscular reaction and electrolysis and
low enough (<20 MHz, far from microwave of 1–
300 GHz) to confine energy transmission to a more
controllable tissue mass without generating excessive
radiation [1, 2]. AC stronger than 100 mA at a lower
frequency of 50 Hz (household mains electricity) is
known to cause fatal electrocution and ventricular
fibrillation. In contrast to the ionizing electromagnetic
waves at much higher frequencies such as the typical x-
ray of 1018 Hz, the RF energy is non-ionizing and be-
lieved to be free of health hazards if used properly. The
term ablation in the context of RFA can be compre-
hended as a kind of virtual surgical ablation, i.e., to
devitalize a volume of tissue without removing it from
the body, resulting in an effect similar to that of surgical
resection.

Evolution of RF-based therapies

The use of electrical current to heat tissues for medical
purposes is by no means new and can be traced back to
the 19th century, shortly after the English physicist
James C. Maxwell and the German physicist Heinrich
Hertz theoretically and practically characterized elec-
tromagnetism. Near the end of the 19th century, the

French scientist Jaques-Arsène d’Arsonval found that
the neuromuscular response or electric shock did not
occur when the frequency of AC passing through the
body was set above 104 Hz. At approximately 1900, the
Croatian physicist Nikola Tesla first recognized heating
of biological tissues with RF current. The first widely
accepted RF generator was produced in the early 1900 s
through the collaboration of a physicist (William T.
Bovie, 1882–1958) and a surgeon (Harvey Cushing,
1869–1939). Little has changed since the basic principles
were applied by Bovie [1, 2]. These pioneering endeavors
laid the foundation for the subsequent use of RF energy
in medicine. During the development of RFA, although
certain methodologic or conceptual differences might
exist, several historical synonyms have been used for
electricity-generated heat therapies, including arsonval-
ization [1], fulguration [3, 4], electrocoagulation [5],
oscillatory desiccation [6], electrocautery [7, 8], electro-
surgery [9, 10], diathermy [11], electrophysiotherapy [12],
and RF coagulation [13].

For almost a century in clinical oncology, physicians
from many disciplines have applied this technique to
coagulate surface lesions such as skin tumors, lesions in
accessible body cavities such as bladder, gastrointestinal,
and tracheobronchial tumors, and lesions exposed at
open surgery such as intracranial tumors [6–10]. Mean-
while, the ‘‘electric scalpel,’’ an RF instrument, has
widened the therapeutic scope of all surgical specialties
by allowing the safe division of tissue and by coagulating
bleeding vessels [9, 10]. In principle, these applications
use a sharp, brief RF energy delivery linearly for a
bloodless incision or at a focal point for coagulative
hemostasis to minimize unwanted energy dissipation
into the surrounding tissues and collateral damage [10].
Similarly, destruction of peripheral sensory nerves for
control of constant pain [14] and transcatheter ablation
of abnormal cardiac conducting pathways for the treat-
ment of arrhythmia [15, 16] require more or less focused
RF energy deposition.

In contrast, interstitial RFA for the management of
solid malignancies necessitates a more dispersed distri-
bution of relatively mild RF energy to cause a more
extensive sphere of tissue destruction. In recent years, the
RFA of deeply seated tumors in internal organs has been
realized thanks to two important and associated tech-
nologic developments in the clinic: (a) the increased
sensitivity and specificity of imaging diagnosis with ad-
vanced ultrasound (US), computed tomography (CT),
and magnetic resonance imaging (MRI); and (b) im-
proved guidance in and monitoring of interventional
procedures with implementation of dedicated imaging
modalities and endoscopic equipment. In accordance
with this trend, tremendous efforts have been made
mainly to remodulate the RF technology from previ-
ously more focused to currently more volumetric energy
deposition to meet the requirements of oncologic radi-
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cality for tumors of clinically relevant size. These ad-
vances have been achieved by upgrading RF generators
to yield more appropriate power output (e.g., ‘‘pulsed’’
current depositions), controllable tip temperature, and
impedance adaptation, by optimizing the RFA electrode
configuration to improve heat generation and distribu-
tion, and by decreasing local heat loss through vascular
occlusion and induced hypotension. These changes have
significantly improved the efficacy of RFA and enabled
ablation of larger lesions on the order of several centi-
meters [20–34] compared with only several millimeters
previously [17–19]. Numerous groups and individuals
have actively participated in this campaign of experi-
mental research and instrumental optimization and
jointly contributed to the current boom in RFA therapy
[17–34]. Notably, even a few doctoral theses have focused
on RFA-related topics [34–40].

Thus far, the liver is the major organ that has been
studied most intensively for the management of primary
and metastatic tumors [18, 23–25]. After many years of
percutaneous ablation of small hepatocellular carcino-
mas (HCCs) in patients who had cirrhosis, Lencioni et al.
demonstrated superior 3- and 5-year survival rates of
89% and 61%, respectively, and concluded that RFA is
more effective than surgery and should be offered as the
first-line treatment for patients who have HCC [41]. The
evolution of this technology and increasing clinical
experience have opened up new frontiers in treating, with
encouraging results, tumors of other organs including the
lung [42, 43], breast [44], brain [45], bone [46–50], adrenal
gland [51, 52], prostate [53, 54], kidney [55–58], pancreas
[59], spine [60], retroperitoneum [61, 62], and so on (there
are too many publications to cover entirely). Experi-
mentally, VX2 carcinoma (but not sarcoma as errone-
ously termed elsewhere [63]) is the most popular
transplantable tumor model in rabbits. Until recently,
this extremely malignant tumor was regarded as incur-
able [63]. However, with a modified VX2 tumor fragment
implantation method (secured by sealing of the puncture
with tissue glue), an eradication rate higher than 50% has
been shown with RFA in the liver [64], kidney [65, 66],
lung [67, 68], and brain [69] as proved by long-term tu-
mor-free survival rates in animals and histomorphologic
evidence [34, 64–69]. These new developments most
likely prelude a fundamental shift in the way physicians
traditionally approach cancers.

Mechanisms of RFA

The mechanisms of tissue heating in RFA are based on
the adequate conversion of electrical energy into thermal
energy. Most current RFA devices are monopolar, i.e.,
there is a single ‘‘active’’ electrode, with current dissi-
pated at a returning grounding pad. During the RFA
procedure, an electrode is inserted into the target tissue.
RF current flows from the generator through the non-

insulated tip of the electrode into the tissue and follows
the natural paths in the interstitium toward the dispersive
electrode or grounding pad to form an entire electric
circuit. Under a certain voltage as the potential energy,
electrons travel smoothly, without significant thermal
effect, from one atom to the orbit of the next along that
part of the circuit made up of metal conductors; the only
poor conductors in this circuit are biological tissues with
higher impedance. As the ions of the tissue attempt to
follow the change in direction of the AC, ionic agitation
occurs, resulting in frictional heat of the tissue, i.e.,
resistive or ohmic heating. Because the large surface area
of the grounding pad prevents heat production by
decreasing local current density and electrical resistance,
the real frictional heat is generated and concentrated
only in the immediate vicinity of needle electrode. Hence,
it is the tissue around the electrode instead of the elec-
trode itself that is the primary heat source in RFA. When
the temperature increases to a certain level, normally
higher than 70�C, instant tissue coagulation occurs. A
similar type of tissue destruction can be created with
bipolar RFA devices that have two ‘‘active’’ electrodes
usually placed in close proximity, resulting mainly in
destruction of the intervening tissues without the need of
a grounding pad [20, 31].

Despite their distinct mechanisms, RFA can be con-
ceptually confused with electrocautery [17, 18, 20].
Electrocautery uses an electrically heated tip to coagulate
tissue and to control bleeding, whereas no RF current
flows through the patient. The tip of the electrocautery
device becomes heated by the passage of an electric
current through a high resistance wire. When the heat is
transferred from the tip by conduction to tissue for
coagulation, i.e., conductive heat, several more focal and
intense changes occur: cells vaporize, removing water
from the tissue, thereby causing the tissue to shrink and
the blood vessels to contract and/or the protein in blood
cells and tissue to form a coagulum.

Biologically, the effects of heat-related therapies such
as RFA on tissues including tumors involve multiple
complex mechanisms and depend on the temperature and
duration of heat exposure and on local factors such as
organ perfusion, tissue density, and electrolyte concen-
tration. Different characteristics of cellular damage are
observed at different temperatures. Although variable
among tissues, thermal injury begins at 42�C [70]. If the
temperature is moderately increased to 42�C to 45�C for 3
to 50 h, as typically seen with hyperthermia (distinct from
thermotherapy) [70], a progressive cellular degeneration
similar to programmed cellular death or apoptosis occurs
in steps of conformational change of macromolecules,
damage to membranes, chromosomes and cytoskeletons,
retardation of energy metabolism, nuclear pyknosis, and
inhibition of DNA, RNA, and protein synthesis [71, 72].
However, even prolonged exposure at this temperature
range will not kill all cells in a given volume because
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continued cellular function and tumor growth can be
observed [73]. As temperature increases, the exposure
time necessary for irreversible cellular damage shortens
exponentially, e.g., exposure to 50.8�C for 2 min proves
lethal to myocardial cells [73, 74]. At temperatures higher
than 60�C, coagulation of proteins, which are basic con-
stituents of cytosolic and mitochondrial enzymes and
nucleic acid–histone complexes, instantaneously occurs,
resulting in cellular death [75, 76]. However, temperatures
higher than 100�C causes water in tissue to boil, vaporize,
and carbonize, as is typically seen when dividing tissue
and stopping hemorrhage with electrosurgery. Therefore,
a temperature between 50�C and 100�C throughout the
entire target volume is considered adequate for thermal
ablation [77, 78]. Heat has a direct cytotoxic effect on the

tumor and a considerable influence on tumoral vascula-
ture. Vascular damage represents another important tis-
sue response to thermal ablation. After heat exposure, the
common histopathologic changes are microvascular cell
swelling and disruption, intravascular thrombosis, and
neutrophil adherence to venular endothelium. The ob-
served decrease in microvascular perfusion during RFA
and vascular shutdown after RFA (Fig. 1a–c) is probably
the reason that RFA is superior to ethanol ablation [34,
64, 65, 67]. After RFA, progression of marginal vessel
injury may lead to ongoing tissue necrosis. Aside from
the thermal destructive effect of RFA, secondary anti-
cancer immunity due to activation of tumor-specific T
lymphocytes [79] appears to play a role in experimental
RFA [64–69].

Fig. 1. Intraindividual comparison between the unablated
and ablated VX2 tumors in the liver of a rabbit 1 day after RFA
using a 5% saline mediated wet electrode. A Microangiogram
displays an unablated hypervascular tumor in the right lobe of
the liver with a tortuous afferent artery (small arrow) and an
RF-ablated tumor in the left lobe seen as a filling defect with a
truncated tumoral feeding artery (large arrow). The rectan-
gular frames indicate the approximate locations where the
histopathologic views (b and c) were obtained. B, C Photo-
micrographs of the (b) unablated and (c, right) ablated tumors
display almost identical histopathologic appearances of the

VX2 carcinoma in terms of tissue structure, cellular compo-
sition, and intratumoral spontaneous necrosis (arrow), i.e.,
thermal fixation or ghost phenomenon as seen in C. However,
there is a remarkable distinction in the intratumoral vascula-
ture. Viable tumor contains patent blood vessels (arrow-
heads) filled with blood cells (but now with injected barium
particles for microangiography), whereas RF-ablated tumor
contains nonfunctioning blood vessels filled with air bubbles
due to heat-induced tissue coagulation and water evaporation
(arrowheads). HE staining, original magnification 400·.
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Biophysically, RF energy deposition in the tissue is
governed by various factors including RF current den-
sity, current intensity, electrode size, tissue conductivity,
and the duration and fashion of RF application. For a
potential eradicative RF tumor ablation, i.e., the entire
tumor plus a 1-cm peritumoral safety margin on all sides,
the tumor size and corresponding required RFA lesion
size (all assumed as spheres) are listed in Table 1.

To optimize the formation of a sizable RFA lesion,
each of the following technologic developments, whether
commercially available or under preclinical investigation,
has been realized to deal with one or more of the bio-
physical factors mentioned above. These are explained
from a practical point of view.

RFA electrodes: design and working
principles

The first experiments with RFA on liver tissue were
performed in 1990 by using plain electrodes [17, 80]. The
transverse RFA lesion diameter was restricted to 0.6 to
1.7 cm in perfused pig liver [23, 80–85] due to a rapid
increase in electric impedance with current shutoff, and
the clinical results were disappointing [85–87].

Two mechanisms are responsible for impedance
rise during RFA. The first mechanism is the irreversible
dehydration and charring of the tissue immediately
adjacent to the electrode [1, 77, 83, 88–90]. The second
mechanism is the reversible formation of electrically
insulating gas between the electrode and the tissue due to
boiling and evaporation of tissue fluid [23, 81].

To overcome size limitations in RFA, numerous
modified electrodes have been developed and tested since
1994. Some of the designed electrodes have been com-
mercially available, and others are under preclinical
investigation. Four different concepts have led to the
development of five basic types of electrodes: bipolar
(bipolar electrodes), saline perfusion through the elec-
trode into the tissue (wet electrodes), internal cooling
(cooled electrodes), and enlargement of the electric field
(multiple and expandable electrodes).

Early electrodes

Bipolar electrodes

In bipolar RFA [20, 91, 92], a second parallel electrode is
used instead of the dispersive plate. In monopolar RFA,
the current density decreases as the inverse square of the
distance from the electrode [93]. Because heating is pro-
portional to the square of the current multiplied by the
resistance (I2R), heating decreases as the inverse of the
fourth power of the distance in a very steep exponential
decay [93]. Moreover, heating in this limited area is not
homogeneous but concentric and preferentially takes
places where it should not: immediately adjacent to the
electrode, leading to rapid charring and power shutoff.

In contrast, in parallel bipolar RFA, there is a high and
constant electric field gradient between the two elec-
trodes, so that heating takes places homogeneously in the
entire area between them [30]. With the electrodes sepa-
rated by more than 2.5 cm in ex vivo liver, coagulation
appears like a butterfly [20, 91]. Bipolar RFA was been
abandoned after a short clinical trial in 1996 because of
difficulties in correct parallel insertion by the percuta-
neous route [86].

Multiple electrodes

By applying current to multiple electrodes simulta-
neously, current is redistributed to a larger electrode–
tissue contact surface. The current density is spread out
more homogeneously over the covered area, which
diminishes charring.

The simultaneous activation of multiple (two to five)
parallel electrodes yields ellipsoid, triangular, rectangu-
lar, or spherical lesions, depending on the configuration,
with a maximal diameter of 3.2 cm in ex vivo liver [94,
95]. When electrodes are spaced farther apart than
1.5 cm, the central area is not coagulated [94, 95]. The
technique was abandoned because exact placement of the
electrodes was difficult with a percutaneous approach
[87, 96].

Current commercial electrodes (Table 2)

Wet electrodes

The wet electrode consists of a hollow electrode with one
or more holes at the tip through which an isotonic or
hypertonic (e.g., 5–36 %) saline solution is infused into
the tissue, usually at a rate of 1 mL/min, and beginning
1 min before the start of RF coagulation [97–101].

Several mechanisms have been proposed to explain
the increased coagulation diameter of a wet electrode.
Some are due to the liquid (hydration), others to the salt
(increased NaCl concentration), or both. The infused li-
quid fills the gap between the metal electrode and the
tissue with highly conductive saline instead of electrically
insulating gases [23, 64]. Saline infusion also allows

Table 1. Required RFA size in relation to tumor size

Tumor size
in diameter (cm)

RFA size
in diameter (cm)

RFA size
in volumea (cm3)

1 3 14
2 4 33
3 5 65
4 6 113
5 7 180
6 8 268
7 9 382
8 10 523

aV = (p/6) D3, where V is spherical volume, p is the ratio of circum-
ference to diameter, and D is diameter; RFA, radiofrequeney ablation
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convective cooling at the tip [23, 100]. Thermal conduc-
tivity of the tissue is improved by hydration; therefore,
heat is carried away from the electrode quicker [97].
Hydration and increased ion concentration improve
electrical conductivity of the tissue, even more so when

using hypertonic saline [102]. This decreases resistive
heating near the electrode and spreads the current den-
sity over a larger area [97]. Increased thermal and elec-
trical conductivity cause a flattening of the temperature
curve around the electrode, which permits greater energy

Table 2. Features of commercially available electrodes for radiofrequency ablation

In perfused pig liver, mean ± SD (range)

Company Electrode Type
Transverse diameter
(cm)

Axial diameter
(cm) Reference

Valleylab (formerly Radionics) Cool-Tip RF
1-cm tip

Cooled No data No data

Valleylab (formerly Radionics) Cool-Tip RF
2-cm tip

Cooled 2.9 ± 0.3 No data [111, 112, 114, 115]

Valleylab (formerly Radionics) Cool-Tip RF
3-cm tip

Cooled 3.7 ± 0.6 No data [111, 112, 114, 115]

Valleylab (formerly Radionics) Cool-Tip RF
cluster

Cooled 3.4 ± 0.4 4.0 ± 0.5 [114]

3.6 ± 0.4 4.2 ± 0.6 [112]
RITA Medical
Systems

Model 75/StarBurst Expandable,
multi-tined

2.0 ± 0.4 3.8 ± 1.4 [114]

RITA Medical
Systems

Model 90/StarBurst
XL

Expandable,
multi-tined

1.5 (1.0–2.0) 4.9 (4.5–5.0) [114]

4.2 ± 0.2 4.3 ± 0.3 [112]
RITA Medical
Systems

StarBurst MRI Expandable,
multi-tined

No data No data

RITA Medical
Systems

StarBurst Flex Expandable,
multi-tined

No data No data

RITA Medical
Systems

StarBurst Semi-Flex Expandable,
multi-tined

No data No data

RITA Medical
Systems

Starburst SDE Expandable,
multi-tined

No data No data

RITA Medical
Systems

Model 100/StarBurst
XLi 50

Expandable-wet No data No data

RITA Medical
Systems

Model 100/StarBurst
XLi 70

Expandable-wet No data No data

Boston Scientific
(Radiotherapeutics)

LeVeen 2-cm tip Expandable,
multi-tined

2.4 ± 0.3 2.0 ± 0.4 (1.2–2.7) [114]

Boston Scientific
(Radiotherapeutics)

LeVeen 3-cm tip Expandable,
multi-tined

No data No data [114]

Boston Scientific
(Radiotherapeutics)

LeVeen 3.5-cm tip Expandable,
multi-tined

4.1 ± 0.3 3.5 ± 0.2 [114]

Boston Scientific
(Radiotherapeutics)

LeVeen 4-cm tip Expandable,
multi-tined

4.3 ± 0.5 4.3 ± 0.4 [112]

Berchtold
Medizinelektronik

HiTT 1-cm tip/1.2 mm
diameter

Wet No data No data

Berchtold
Medizinelektronik

HiTT 1.5-cm tip/1.6 mm
diameter

Wet No data No data

Berchtold
Medizinelektronik

HiTT 1.5-cm tip/1.7 mm
diameter

Wet No data No data

Berchtold
Medizinelektronik

HiTT 1.5-cm tip/2 mm
diameter

Wet 1.7 ± 0.4 (1.0–2.2) 3.0 ± 0.8 (1.8–4.2) [114]

3.4 ± 0.8 6.4 ± 1.9 [112]
Berchtold
Medizinelektronik

HiTT 2-cm tip/1.6 mm
diameter

Wet No data No data

Berchtold
Medizinelektronik

HiTT 2-cm tip/2 mm
diameter

Wet No data No data

Invatec MIRAS IOC 3-cm tip Cooled No data No data
Invatec MIRAS IOC 4-cm tip Cooled No data No data
Invatec MIRAS IOC 5-cm tip Cooled No data No data
Invatec MIRAS LC 2.5-cm tip Cooled No data No data
Invatec MIRAS LC 3-cm tip Cooled No data No data
Invatec MIRAS LC 3.5-cm tip Cooled No data No data
Invatec MIRAS LN Expandable,

multi-tined
No data No data

Invatec MIRAS RC Expandable,
spring

No data No data
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delivery to a larger area with less risk of tissue boiling,
evaporation, and desiccation adjacent to the electrode
[103, 104]. This risk of tissue boiling also is decreased by
an increase in the boiling temperature of the saline-en-
riched tissue fluid [22, 27, 29, 34, 64, 99, 105]. When
saline is infused at a low rate (1–2 mL/min) for a limited
time (10 min), it remains concentrated in a small area (1–
2 cm) around the electrode tip [106–108], forming a
‘virtual’ or ‘liquid’ electrode with a much larger diameter
than that of the metal electrode. Because the diameter of
RFA-induced coagulations is directly proportional to the
electrode diameter [109]; accordingly, using a wet elec-
trode can enlarge the thermal lesion [22, 34]. Of note, this
liquid electrode can be irregular [108].

When higher infusion rates are used, contrast-stained
saline has been shown to extend irregularly farther into
the tissue and to leak along the electrode track [110]. This
has led to unexpected damage to distant structures [111–
113]. This kind of complication was more frequent for
the wet electrode than for the cooled and expandable
electrodes in comparative experimental studies [111, 112].
Although unproved, using small volumes of hypertonic
saline might be preferable to larger volumes of isotonic
saline [113].

An irregular shape to the thermal lesion with spread
along vascular axes (type 2 deformity of RFA lesions
according to Mulier et al [114]) has been noticed not only
with high infusion speed [115] or large total volumes
(>25 mL) [111] but also with low infusion rates and
small volumes [22, 23]. This perivascular coagulation is
worrying because in a comparative study of four com-
mercial electrodes, the wet electrode killed five of eight
animals compared with none for the other electrodes due
to thrombosis of portal or hepatic veins [112].

A theoretical oncologic concern about wet electrode
RF is that saline, which is contaminated with viable tu-
mor cells, may leak out of the electrode track and cause
peritoneal or track seeding. Another equally unproved
concern is that the saline may increase the intratumoral
pressure and force tumor cells into the circulation,
thereby causing lymphatic and/or hematogenous seeding
[22, 114].

Wet electrodes have been commercialized by Berch-
told Medizinelektronik (Tuttlingen, Germany) as HiTT
electrodes that have been described in detail elsewhere
[114].

Cooled electrodes

The cooled electrode is an electrically insulated hollow
electrode that contains a closed hollow channel [21, 33,
115]. The inner lumen is used to deliver saline or water to
the tip of the electrode, and the outer lumen returns the
fluid to a collection unit outside the body. The fluid does
not leave the electrode. This way, the tip is internally
cooled to a temperature lower than 25�C to prevent

charring of the tissue immediately adjacent to the tip [33].
A recent study has indicated no significant effects of
coolant temperature on hepatic RFA lesion size induced
by this electrode [116].

A theoretical inconvenience of this method is that the
tumor immediately adjacent to the electrode is spared
during the coagulation. However, after stopping the
coagulation and the perfusion, heat diffuses from the
peripheral to the central part of the thermal lesion so that
the central cells are probably killed too [21]. When the
electrode is pulled out immediately, there is a danger of
seeding viable central cells into the track [13]. To prevent
this, the electrode track should be cauterized on with-
drawal.

The cooled electrode has been commercialized by
Radionics (Ghent, Belgium) and more recently by In-
vatec (Roncadelle, Italy) [114]. The Radionics Cool-Tip
single electrode has a sensor at the tip to allow for con-
tinuous temperature and impedance measurement. Be-
cause it is straight, the Cool-Tip is the sole electrode until
now that can be used for RF-assisted hepatic resection,
in which the future plane of transsection is coagulated
before transsection [117]. The Invatec MIRAS LC and
IOC flexible electrodes have a bent thermistor that
curves away from the tip to monitor tissue temperature.

In the Cool-Tip Cluster electrode (Radionics) [118],
three parallel cooled electrodes are mounted on the same
shaft at a distance of 5 mm. The electrodes are activated
simultaneously. The larger contact surface allows higher
current intensities with less possible charring around the
tip and therefore larger thermal lesions than in single
cooled electrodes [118, 119]. A disadvantage of the
cluster electrode is that it is more difficult to insert per-
cutaneously through a narrow intercostal space or by a
very oblique subcostal approach than the single cooled
electrode [120]. Further, it is harder to visualize all three
electrodes at the same time, so that inadvertent injury to
structures, e.g., blood vessels, is more likely.

Expandable electrodes

An expandable electrode is inserted as a straight insu-
lated needle into the tissue. Once in the desired position,
the active electrode is deployed from the hollow shaft of
the probe. Two types exist: the multi-tined type and the
spring type.

Multi-tined expandable electrodes [121] compose an
array of four to 12 curved electrode tines (prongs) that
are deployed from the hollow needle tip. The electric field
follows the configuration of the deployed prongs. The
larger contact surface between electrodes and the tissue
decreases the chance of charring. Due to the Faraday
cage effect, coagulation starts at the extremities of each
prong and then forms coagulation tubes around each
prong, which subsequently fuse, first centrally and then
at the periphery, to form a more or less spherical coag-
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ulation zone [122–126]. In perfused liver, fusion between
the individual coagulation tubes around each tine is not
always complete and may show clefts, resembling a clo-
verleaf or a daisy [114]. In the first years that expandable
electrodes were used, the RF generator was started only
after complete deployment of prongs. More recently, it
has been shown that RFA with gradual expansion in two
or more steps yields larger coagulation zones. When
prongs are deployed only partly, current is concentrated
in a smaller area, leading to more reproducible complete
heating of this zone. By then fully extending the prongs,
a larger and more complete lesion is achieved [127, 128].
This stepwise expansion is now incorporated in the
protocols of the newest RITA electrode.

Multi-tined expandable electrodes have been com-
mercialized by three companies. RITA Medical Systems
(Mountain View, CA, USA) has Christmas tree-like
electrodes with temperature sensors at the tip of each
prong [129]. The shaft is straight or flexible. The Boston
Scientific (Natick, MA, USA; formerly Radiotherapeu-
tics) electrodes have an umbrella shape [122]. The prongs
of the more recent Invatec electrodes are curved in the
opposite way and are deployed by pulling rather than by
pushing [114].

Expandable spring electrode

The MIRAS RC is a unique type of electrode with a coil
that leaves the tip and is deployed perpendicularly to the
shaft [114].

Expandable-wet electrodes

Miao et al. and Rhim et al. independently described the
expandable-wet electrode, which combines features of
both techniques and which is more effective than the wet
or expandable electrode separately [29, 130–134]. Ex
vivo, lesions up to 10 cm [29] have been obtained with
this method. Lesions are roughly spherical but often
show irregular extensions along blood vessels [29].
Unexpected hepatic and perihepatic burns were noted
with high-speed saline infusion [110]. The expandable-
wet electrode has been commercialized by RITA as the
model 100/StarBurst XLi electrode [110, 114].

Experimental electrodes and saline-enhanced
RFA

Many more electrodes are in the preclinical experimental
phase, such as the cooled-wet electrode that allows
continuous infusion of interstitial hypertonic saline
around the tip of a cooled electrode. The cooled-wet
electrode produces larger coagulation zones than the wet
or the cooled electrode does separately [27, 108, 135–
138]. Potential for tumor eradication has been shown in
patients who had HCCs as exemplified here by a clinical

case, of which coagulation diameters more than 7 cm
could be obtained by activation of the prototype cooled-
wet electrode in one RFA session (Fig. 2).

In saline-enhanced RFA [82, 104, 105, 108, 139],
saline is injected into the tissue as a bolus before RFA,
and the injection needle is not incorporated into the
electrode (in contrast to the wet or the cooled-wet elec-
trode) and, therefore, should not be confused with the
‘‘wet-electrode’’. A full description of experimental elec-
trodes [27, 29–31, 108, 140] and saline-enhanced RFA is
beyond the scope of this report. Despite early disap-
pointing conclusions about instilling saline during RFA
and using hypertonic saline [82], these approaches (alone
or combined) have been further applied and refined [22,
27, 29, 34, 64, 97–108, 110–113, 118, 131–133, 135–141].
However, in the approach of saline injection before
RFA, as with intramuscular injection of a solution, the
saline is diffused or absorbed rapidly not only in but also
beyond the target tissue, especially in well-perfused or-
gans. Therefore, the proportion of injected saline re-
quired to enhance RFA efficacy and the potential for the
aforementioned adverse effects remain uncertain and
uncontrollable. That is the reason a minimum preinjec-
tion coupled with slow simultaneous infusion of hyper-
tonic saline during RFA has been regarded as an
indispensable element for improved ablation efficacy [22,
27, 29, 34, 64, 99, 131–133, 135–138]. Interestingly, one
recent in vivo animal study concluded that hypertonic
saline instillation before RFA is better than simultaneous
instillation during RFA [142], which seems partly in line
with one previous report [82] but contradictory to most
others [22, 27, 29, 34, 64, 99, 131–133, 135–138] and,
hence, needs to be further verified.

Commercial RF generators: design
and working principles

The five companies that produce commercially available
electrodes each have their own generators that are
compatible only with their own electrodes. The specifi-
cations of the generators are presented in Table 3.

Valleylab (formerly Radionics)

The Radionics system consists of a generator and a
perfusion system. Maximal power is delivered during a
predetermined period (usually 12 or 15 min) [114].
Needle cooling is ensured by internal perfusion of
chilled saline and is started 1 min before the start of RF
coagulation. If impedance increases to 10 X above the
baseline value, power is automatically switched off for
15 s and then switched on again [112]. This automatic
control mode yields larger lesions than does continuous
power output, but it has been somehow misleadingly
called ‘‘pulsed’’ RFA since it was initially introduced
[26]. What is important is not the pulse but the pause,
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Table 3. Specifications of commercial radiofrequency ablation generators

Valleylab
(Radionics)

RITA Medical
Systems

Boston Scientific
(Radiotherapeutics)

Berchtold
Medizinelektronik

Invatec

Name of
generator

CC-1 Cosman
coagulator

RITA 1500X
RF generator

RF 3000
generator

Elektrotom HiTT 106 TAG 100 W

Frequency
(kHz)

480 460 460 375 460

Maximal power
(W)

200 250 200 60 100

Power mode Continuous or
pulsed

Continuous Continuous Continuous or pulsed Continuous

Power monitoring Yes Yes Yes Yes Yes
Current monitoring
(A)

0–2.0 No No No No

Impedance
monitoring (X)

Yes Yes Yes Semiquantitative Yes

Temperature (�C)
monitoring of
n channels

1 9 0 1 4

Automatic power
control

Yes, impedance
based

Yes, temperature
based

No (hand control) Yes, impedance based
or temperature based

No (hand control)

Approved by
European Community

Yes Yes Yes Yes Yes

Approved by U.S.
Food and Drug
Administration

Yes Yes Yes Yes No

Fig. 2. A clinical example of using a prototype cooled-wet
electrode. Contrast-enhanced CT scans before (A) 2 weeks,
(B) 3 months, (C) and 9 months (D) after cooled-wet electrode
mediated RFA in a patient with a 5-cm HCC located in the
right liver lobe. The RFA was conducted under laparotomy by
a single electrode insertion with a Pringle maneuver for 18
min, power output at 150 watts and 10% saline infusion at 1
mL/min after preinfusion for one minute. Notice that the
coagulation diameter over 7 cm involves both the entire tumor

(T) and an over 1 cm broad oncological margin except where
the tumor borders the right hepatic vein (thick arrow). The thin
arrow indicates the burned electrode track (B), which was
gradually healed (C, D). At 18 months follow-up, the patient is
still free of tumor with his serum alfa-fetoprotein decreasing
from over 800 ng/mL before RFA to below 3 ng/mL after RFA
and still remaining normal, suggesting possible tumor eradi-
cation.
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i.e., the timely interruption of current when impedance
starts to increase, which allows the dissipation of gas-
eous buildup between electrode and tissue. Without
pause, such evaporated gas can insulate part of the
electrode tip, and the entire current will be loaded on
the rest of the tip, rapidly resulting in charring, in-
creased impedance, and cessation of the RF generator.
The presence of a strict rhythm or regular intervals
governs whether or not the term pulsed should apply.
The real pulsed RFA does exist but has not been ap-
plied for tumor ablation [143, 144].

RITA

The RITA generator is used as such for the expandable
StarBurst XL electrode and in combination with a per-
fusion system for the expandable-wet StarBurst XLi
electrode. Tissue temperature is measured at the tip of the
prongs. There are two possible ways to use the generator
[145]. In the first, a target temperature is chosen, and
power is adjusted automatically to reach and hold this
temperature (temperature control mode) [146]. Alterna-
tively, power can be fixed at a chosen level until a desired
temperature is reached (power control mode) [112]. In
both methods, only temperature and not impedance is
taken into account, in contrast to other generators. The
electrode is deployed gradually according to treatment
algorithms described elsewhere [112, 114]

Boston Scientific (Radiotherapeutics)

For the Boston Scientific (Radiotherapeutics) RF 3000
generator, power output is set manually. Treatment
algorithms are based on a stepwise power increase during
fixed periods [114]. Neither temperature nor impedance is
taken into account. Treatment is continued until power is
shut off by a sudden increase in impedance. A short
pause allows dissipation of gas between electrode and
tissue, after which a second cycle at a lower power level is

started. Although this pause has the same aim as the
pauses in the pulsed modes for the Radionics and the
Berchtold generators, the Boston Scientific (Radiother-
apeutics) generator has to be restarted manually. Treat-
ment is stopped when the second power shutoff occurs.

Berchtold

The Berchtold system consists of a generator and a
perfusion system. The power level and the duration are
chosen according to a treatment algorithm [114]. This
power level is further adjusted by one of two automatic
power control modes: impedance control or temperature
control [147]. If impedance becomes too high in the
impedance control mode, power is interrupted auto-
matically for a few seconds until impedance returns to
normal values, in a way similar to the pulsed mode for
the Radionics system. Similarly, in the temperature
control mode, power is shut off temporarily if a prede-
termined temperature threshold is reached. Perfusion is
started 1 min before staring RF energy delivery. Perfu-
sion speed is controlled automatically based on power
and tissue impedance [112]. When impedance becomes
too high, an extra bolus of saline is injected to disperse
any gaseous buildup around the electrode [112].

Invatec

For the Invatec TAG 100 W generator, power output is
set manually. Treatment algorithms are based partly on a
stepwise power increase during fixed periods and partly
on tissue temperature feedback from the thermistor that
bends away from the tip of the electrode [114].

Size and geometry of hepatic RFA
lesions

In RFA of liver tumors, precise tailoring of the size and
shape of the thermal lesion is important. The coagulated

Table 4. Comparison between thermal coagulation necrosis and (classic) coagulation necrosis

Features Thermal coagulation necrosis (Classic) coagulation necrosis

Causes Physical
(RFA, ILT, MWA, etc.)

Biological
(ischemia, trauma, infection, etc.)

Occurring time Seconds to minutes Hours to days
Effects Tissue fixation Enzymatic cytolysis
Macroscopic
aspects

�3–5 Zones Zoneless, amorphous

Microscopy
(HE staining)

Almost intact in tissue
architecture and cell
composition (middle zone)

Cytoplasmic eosinophilia, nuclear
karyorrhexis and remnant tissue
architecture

Microscopy (enzymatic
histochemical staining)

Negative Negative

Immunohistochemical
assays

Maybe weakly positive Negative

Duration before
repaired

Up to months Up to weeks

HE, hematoxylin and eosin; ILT, interstitial laser thermotherapy; MWA, microwave ablation; RFA, radiofrequency ablation
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area should be large enough to encompass the tumor and
a safety margin of 1 cm at all sides. Because US moni-
toring of the coagulation zone is unreliable, exact prior
knowledge of the size and shape of a single-session RFA
lesion and its relation to the electrode tip is essential
[114].

Size and geometry of hepatic RFA lesions by com-
mercial electrodes have been analyzed in a recent
exhaustive review [114]. The paucity of available data is
striking. Many descriptions of RFA lesions are limited to
the mean transverse diameter. Data on length (axial
diameter), distortion, completeness, and spatial relation
to the electrode tip are rare to nonexistent. As of January
2004, data on the most basic parameter (transverse
diameter) in the perfused pig liver are available for only
nine of the 30 electrodes that are presently on the market
(Table 2). Values for the same parameter using a Pringle
maneuver are available for only one of the 30 electrodes.

With normal blood flow, diameter and length of RFA
lesions in pig liver are often smaller and more variable
than the length of the electrode tip or the diameter of the
deployed prongs suggests [114]. RFA lesions are not al-
ways perfectly spherical. They often resemble ellipses or
flattened spheres [114]. In the perfused liver, a type 1
distortion of the RF lesion (a lesion asymmetrically
smaller than expected) by the heat-sink effect of nearby
blood vessels is very common for all electrodes [114].
This distortion frequently causes incomplete ablation
and local recurrence. A type 2 distortion (a lesion irreg-
ularly larger than expected) is seen mainly with the wet
electrode and saline-enhanced RFA and can cause un-
wanted damage [114]. Surgical clips near the tumor are
another source of type 2 distortion [148]. Incomplete
fusion of RFA lesions between prongs is noted for RITA
and Radiotherapeutics expandable electrodes [114].

Compared with RFA in perfused liver, thermal
diameter is larger when performing RFA during partial
or total blood flow interruption in pig liver and in pa-
tients who have liver tumors [114]. Distortion is less
frequent and complete fusion is more frequent with he-
patic vessel occlusion [114]. All these findings are more
pronounced in cases of complete interruption of inflow
(Pringle maneuver) or outflow (occlusion of hepatic
veins) as compared with partial occlusion, i.e., only the
hepatic artery or the portal vein [114, 149]. This may
partly explain the trend toward less local recurrence (4–
9%) in series using a Pringle maneuver rather than a
percutaneous approach alone (30–60%) [114].

Pathophysiologic process
of thermal coagulation necrosis

The pathogenic conditions posed by RFA fundamentally
differ from those of ordinary tissue death and cannot be
readily recognized without a lot of experience or inter-
preted using classic medical knowledge [34]. Even skilled
pathologists may fail to correctly diagnose a typical RFA
lesion under routinely processed microscopy, especially
only at needle biopsy, without an overview of the entire
cross-section. Therefore, to identify this unique type of
heat-related tissue pathology, it is necessary to under-
stand the essential differences in mechanisms of action
between commonly occurring and RFA-induced tissue
death (Table 4).

Necrosis, by classic definition, means pathologic cel-
lular or tissue death in a living organism, irrespective of
the cause and is the sum of the morphologic changes
indicative of cell death caused by the progressive degra-
dative action of enzymes; it may affect groups of cells or
part of a structure or an organ. When normal cells are

Fig. 3. Serial frozen sections and photomicrographs with
(A) HE staining and (B) nicotinamide adenine dinucleotide
histochemical staining of the VX2 tumor-bearing liver from a
rabbit immediately after incomplete tumor RFA. Although the
differences between ablated and unablated tumor (T) and
normal liver (L) can not be readily seen with HE staining due
to the so-called thermal fixation or ghost effect (a), the mar-

gins (arrowheads) of the ablation are sharply circumscribed
with nicotinamide adenine dinucleotide staining (b). In com-
parison with negative staining in the RF-ablated tumor and
liver tissues (N), oxidative enzymatic activity appears much
stronger (+++) in normal liver (L) than that (+) in viable tumor
(T). Original magnification 100·.
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lethally injured in common conditions (ischemia, trauma,
infection, etc.), the resultant membrane dysfunction and
subsequent internal release of various enzymes eventually
proceed to degrade cellular structures and constituents.
This is the classic process of necrosis; unfortunately,
current morphologic means are not sensitive enough to
detect its initial point. These enzymatic reactions result in
a number of microscopically observable changes, e.g.,
nuclear karyorrhexis due to membrane and chromatin
fragmentation into irregular pieces and cytoplasmic
eosinophilia due to enzymatic degradation of cytosolic
RNA and proteins. These changes are characteristic of a
typical coagulation (or coagulative) necrosis, i.e., rem-
nant tissue architecture with ruined cellular composition.
The entire process takes hours to days followed by a few
weeks of tissue repairing. Intratumoral spontaneous
necrosis may also belong to this category, although it
appears more amorphous without obvious healing signs.

In contrast, the moderately elevated temperature of
50�C to 100�C during RFA produces an area of imme-
diate tissue coagulation. This constitutes the major por-
tion of the RFA lesion and occupies the area between the
immediate perielectrode zone and the periphery of the
lesion. The affected life structures and substances
including cytosolic enzyme proteins in particular are
subjected to an instantaneous thermal fixation, an effect
equivalent to that with formalin used for routine histo-
pathology. Because of such thermally induced structural
denaturalization and functional deactivation of the en-
zyme proteins, all the aforementioned progressive enzy-
matic tissue or cell degradation as seen in the process of
traditionally defined coagulation necrosis becomes
impossible. As a consequence, with conventional staining
techniques, the tissue architecture and cytologic details
appear well preserved, despite an absence of any activity
on enzymatic histochemical assays (Figs. 1c, 3) [34, 120,
125, 149, 150]. This has been described in the literature as
the ghost phenomenon or thermal fixation [34, 64, 65, 67,
69, 151, 152]. However, the loss of enzymatic activity
does not exclude antigenicity of the denatured enzyme
proteins that have undergone thermal (RFA) or chemical
(formalin) fixation, which explains certain positivity in

RFA lesions of thermal coagulation necrosis with
immunohistochemical examinations [99]. In other words,
immunoassays can be less reliable than enzymatic stain-
ing for tissue viability determination. The pronounced
effects of vascular destruction with RFA often postpone
the healing of the ablated region by blocking neutrophils
with hydrolytic enzymes from access into the lesion,
frequently resulting in incomplete absorption and fibrous
encapsulation of the residual lesion [34, 64, 65, 67, 69,
152]. Gradual fading of cytologic staining properties with
hematoxylin and eosin (HE) dyes and evolving classic
coagulation necrosis may take as long as many months
[34, 64, 65, 67, 69, 150, 152], although one clinical study
reported this finding as soon as 3 days [120], which
contradicts another clinical study that also included
observations at 3 days [150]. Aside from such represen-
tative alterations in the median zone of a RFA lesion, the
excessive heat around the needle track often causes tissue
microcavitation and carbonization in the central zone,
whereas the mild heat in the outer zones stimulates tissue
reaction, resulting in cell injury and even typical necrosis
due to released enzymes from the infiltrating neutrophils.

To avoid confusing terminology as has appeared in
the literature [19, 21, 26, 79, 125, 149, 153], to make a
clear distinction in the future documentation, and to
make the minimum necessary changes, it seems logical to
stipulate the nomenclature of these two totally different
sets of necrosis as (classic) coagulation necrosis and
thermal coagulation necrosis (Table 4), whereas thermal
fixation sounds more like a technical process than a
pathologic status [152].

Morphologic features of RFA-induced
lesions

Extensive histopathologic investigations on excised and
biopsied specimens obtained from experimental animal
research and clinical patient studies on various thermo-

Table 5. Histomorphologic features of radiofrequency ablated lesions

Zone Macroscopy
Microscopy
(hematoxylin and eosin)

A Needle
track

Microcavitation and/or
charred area

B Ablated
tumor

Intact tumor tissue
architecture (thermal fixation)

C Ablated
peritumoral
tissue

Intact normal tissue
architecture (thermal fixation)

D Dark rim Hemorrhage with typical
necrosis

E Vague outer
band

Hyperemia, inflammatory
infiltration, edema

Table 6. Histopathologic comparison of tissues without and with RFA

Tissues without
and with RFA

Nuclear and
cytosolic staining
(HE)

Enzymatic staining
(e.g., NADH or TTC)

Normal tissuea Present Positive (+++)
Tumor tissueb Present Positive (+�++)
Normal tissue
with RFAc

Present Negative

Tumor tissue
with RFAc

Present Negative

Tumor-native
necrosis

Absent or poor Negative

aOutside the RFA lesion
bSpared fiom RFA (incomplete ablation)
cMiddle zone
HE, hematoxylin and eosin; NADH, nicotinamide adenine dinucleo-
tide-diaphorase; RFA, radiofrequency ablation; TTC, 2,3,5-triphenyl-
tetrazolium chloride
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therapies formalignant tumors have not only enriched our
conceptual understanding of this unique type of pathology
but also built up our experience in correctly interpreting
the manifestations of RFA lesions at different stages [34,
64, 65, 67, 69, 99, 120, 125, 149–152]. In practice, it appears
easier to identify a RFA lesion by gross inspection than by
microscopic observation (Table 5).

Macroscopically on cross-sections, a typical lesion of
RFA tumor eradication appears well demarcated and
contains the following five zones that reflect degrees of
tissue damage along the temperature gradient outward:
zone A, the dark overheated carbonized or vaporized
center surrounding the needle track; zones B and C, the
pale or tan moderately heated broad zones of coagulated
tumoral and peritumoral tissue, respectively; zone D, the
distinct reddish (fresh) or brown (formalin-fixed) mildly
heated hemorrhagic rim; and zone E, the faint outer layer
of hyperemia and/or edema [34, 65, 67] (Table 5). The
presence or absence of the peripheral two layers distin-
guishes between in vivo and ex vivo RFA lesions [27, 34].
Mitochondrial enzymatic histochemical staining with
2,3,5-triphenyltetrazolium chloride can be used to dis-
tinguish dead from viable tissues on the surface of tissue
sections but may confound native tumor spontaneous
necrosis and RFA-induced tissue coagulation [120, 153–
158] (Table 6). The global shape of the RFA lesion is not
necessarily spherical and can be altered by factors such as
perfused blood vessels passing through or by the ablative
region, as discussed elsewhere [34, 111, 114, 149, 152].

Microscopically, the center (zone A) and the two
outer layers (zones D and E) of a typical RFA lesion can
be easily recognized according to the corresponding
characteristic changes in tissue structure and cell com-
positions. It is the in-between coagulated zone, which
forms the dominant part of the lesion and includes tu-
moral (zone B) and normal (zone C) tissues, that appears
most tricky to identify with routine histopathologic
assessment, especially soon after therapy, because the
RFA-treated tissues in this region do not meet the classic
criteria for having undergone typical coagulative necrosis
[34, 64, 65, 67, 69, 99, 150–152]. Instead, having been
thermally coagulated or fixed, tumoral and normal cells
and tissues in this zone look almost identical to those
without RFA at HE-stained microscopy (Fig. 1b vs. 1c,
Tables 5, 6). Therefore, for therapeutic confirmation,
especially by fine-needle aspiration, this technique may
cause false-positive results that show cytologically ‘‘via-
ble’’ cells that have actually been devitalized and will
sooner or later undergo coagulative necrosis [150, 159]. It
is also less sensitive to residual viable tumor immediately
after RFA than at the follow-up weeks or months later,
when the cytologic staining properties with HE dyes
gradually fade out and the classic coagulative necrosis
appears [34, 64, 65, 67, 69, 150–152].

Nonetheless, cell viability in the ablated zone soon
after RFA can be absolutely determined by a negative

reaction with the enzymatic histochemical stains such as
lactate-dehydrogenase, maleate-dehydrogenase, or nico-
tinamide adenine dinucleotide-diaphorase [34, 120, 125,
149, 150]. Only recently has this technique become the
accepted gold standard for tissue viability determination
after RFA at the cellular level [34, 120, 125, 149, 150],
despite the fact that its importance had long been dem-
onstrated with other thermal ablation techniques [151,
160]. The enzymatic techniques may also help to differ-
entiate cellular types by demonstrating degrees of stain-
ing between normal and malignant and between viable
and dead cells (Fig. 2a,b, Table 6). However, a combined
use of HE and enzymatic stainings from serial frozen
sections is recommended for better analysis of viability
and morphology [34, 126]. Nevertheless, a careful
inspection of the different zones on an HE-stained cross-
section, especially under a low magnification microscope,
may allow the correct diagnosis of an RFA lesion [34, 64,
65, 67, 69, 152] after taking the following features into
account: (a) a well demarcated lesion, (b) gradient
damage in five zones, and (c) vascular thrombosis with
air bubbles (Fig. 1a–c).

In reality, these zonal features can vary in intensity and
extent in each zone for a given RFA lesion depending on
the causative temperatures. For instance, zone A with se-
vere tissue desiccation can be predominant in relatively
small lesions induced by intense RF current delivery
through dry electrodes, and then the typical thermal
coagulation (zones B and C) can become less obvious
[126].With advanced technologies for creating largerRFA
lesions at more adequate RF energy delivery, like cooking
a medium-done (but not over- or well-done) steak, it
should not be surprising to see the thermal fixation or
ghost phenomena more frequently [34, 64, 65, 67, 69, 151,
152]. In contrast, if insufficient RF current is applied, the
‘‘rare-done’’ lesionsmay contain severely injured cells with
activated cytosolic enzymes and/or undestroyed blood
vessels bringing in neutrophils; both jointly create typical
enzymatic tissue damage. This could be one of the possible
explanations for the reported uncommon real coagulative
necrosis 3 days after RFA [120].

As for whether there are RFA-specific histopatho-
logic features, in 1924, Clark et al. published a classic
description of electrocoagulation in the desiccation (i.e.,
‘‘over- or well-done’’) mode of RF current [161]. They
described certain characteristic changes including
shrunken and shriveled cells with condensed and elon-
gated nuclei that produced a ‘‘mummified’’ appearance
[161]. This is almost identical to the desiccation change
seen in the RFA lesion in patients treated with a modern
dry electrode [126]. Another recent clinical report dis-
played a photomicrograph of ‘‘abnormal elongated tu-
mor cells with dense spindle-form nuclei and streaming
cytoplasm.’’ This was regarded as a common finding
after RFA as a result of heat preservation or electro-
cautery effect [120]. Despite the lack of wide support
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from the literature [34, 62, 63, 65, 67, 151, 152, 159],
similar histologic descriptions have been adopted in a
series of subsequent laboratory studies in rats with an
experimental breast tumor [154, 156, 157]. However, the
demonstrated histologic findings did not convincingly
match the described changes characteristic of RFA [154,
156, 157]. Therefore, whether this notion represents the
real truth needs to be verified by future clinical and
animal research. Morphologically, the potential pitfalls
could be (a) mistaking ablated dead tissue for viable
tissue at conventional microscopy [99, 150], (b) mistaking
intratumoral spontaneous necrosis for RFA-resultant
coagulation necrosis [63, 120, 153–159], and (c) rendering
certain nonspecific histologic findings as characteristic
for RFA. Further, there have been found a few false
technical descriptions in previous RFA studies such as
the erroneous use of the macroscopic histochemical
staining agent 2,3,5-triphenyltetrazolium chloride to fix
tumor tissues for light microscopy [120, 153] and the
confused nomenclature between oxidative enzymatic and
immunohistochemical stainings [111, 120].

Applications of imaging
modalities in RFA

Imaging technology has played an important role in the
diagnosis, treatment planning, guidance of percutane-
ous, laparoscopic, or intraoperative electrode position-
ing, real-time monitoring of the RFA procedure, and
postprocedural evaluation of the therapeutic response
[162–167].

Although US has been most widely used for guiding
the placement of RFA electrodes, good real-time US
monitoring of all margins of RFA lesions appears diffi-
cult or impossible because of the presence of microbub-
bles from vaporization of intracellular water during RFA
[111], as shown by basic research [168]. In contrast, un-
enhanced CT has been promoted as an effective way to
monitor RFA compared with US because of improved
lesion discrimination, reproducible decreased attenua-
tion during ablation, and better correlation to pathologic
size [169]. MRI may offer further advantages over US
and CT for guiding and monitoring RFA procedures
provided a fully magnetically compatible RFA system
and a swift and interactive MRI-RFA alternating system
become available at reasonable costs [170, 171].

Assessment of RFA therapeutic responses with
imaging modalities represents another challenge. Non-
specific findings with plain scans such as altered re-
gional echogenicity on US, densities on CT, or signal
intensities on MRI have been found inaccurate and
unreliable for the extent of induced coagulation. With
the use of commercial contrast agents, CT and MRI
demonstrate circumscribed hypodense or nonenhancing
regions surrounding the electrode tract as soon as a few
minutes after RFA, thus reflecting the extent of tissue
destruction. The most accurate predictor of induced
coagulation is believed to be the identification of a
previously enhancing tumor but void contrast
enhancement after RFA (Fig. 2). Nevertheless, two key
limitations of current techniques remain: insufficient
spatial resolution for detecting small residual foci of

Fig. 4. (A–C) T1-weighted MR images and (D)
corresponding cross-section from a rat-bearing
liver implanted rhabdomyosarcoma 1 day after
cooled electrode-mediated RFA. Although
virtually indiscernible before contrast (A), 5 min
after intravenous injection of a non-porphyrin
NACA, the RFA lesion (arrow) is demarcated as
a hypointense area relative to the strongly
enhanced liver (B). A few hours after NACA
injection, the lesion has striking rim enhancement
encompassing the ablated tumor and marginal
liver tissue (C), which persists for a few days and
matches well with the histomorphologic section
(D), indicating complete tumor ablation.
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peripheral tumor (the likely cause of later ‘‘recurrence’’)
and inadequate imaging specificity for the differentia-
tion between tissue inflammatory reaction and incom-
pletely ablated viable tumor after RFA procedure.
Therefore, current ablation strategies attempt to destroy
a peripheral 1-cm rim of apparently normal tissue sur-
rounding the tumor margins to ensure complete local
disease control, although this is not always possible.
Thus, periodic imaging follow-up every 3 to 6 months
has become common clinical practice to enable the
detection and further treatment of residual tumor after
interval growth [24, 172]. By comparing pulse inversion
contrast-enhanced harmonic US, contrast-enhanced
power Doppler US, and helical CT in a clinical setting,
Meloni et al. concluded that contrast-enhanced pulse
inversion harmonic imaging may enable the detection of
residual nonablated tumor in more cases than contrast-
enhanced power Doppler US and may ultimately prove
to be a useful adjunct for percutaneous ablation ther-
apies, but admitted that contrast-enhanced axial CT
and MRI are still the most sensitive tests for managing
thermal ablation in patients who have HCC [173].
However, in line with previous animal studies [174],
Choi et al. clinically demonstrated equivalent efficacy
between contrast-enhanced gray-scale harmonic US and
contrast-enhanced CT for the early assessment of ther-
apeutic response of HCC to RFA [175]. New techniques
are still emerging; for example, sonographically based
elastography was found reliable for delineating thermal
lesions resulting from RFA [176].

Thus far, the visual effects created with all currently
applied in vivo imaging techniques on RFA-induced le-
sions are nonspecific, indirect, and inaccurate in a sense
that it is impossible to make a clear-cut distinction be-
tween the ablated dead tissues and unablated viable tis-
sues that might be injured but still vital [177], as seen
with ex vivo enzymatic staining. However, the recent
discovery and refinement of a new type of specific
imaging markers, namely necrosis-avid contrast agents
(NACAs), may provide a virtual in vivo surrogate of
‘‘histochemical staining’’ for noninvasive imaging deter-
mination of tissue viability [178–181]. These agents
firmly label nonviable tissues and are seen as persistent
strong contrast enhancement or hotspots on MRI or
nuclear imaging independent of tissue origin or the cause
of necrosis [182–186]. Equal to the potential utility in
myocardial viability determination [187–191], the other
promising application of NACAs is the postprocedural
assessment of minimally invasive ablation therapies
including RFA [192, 193]. NACA-mediated imaging
modalities could help to identify complete or incomplete
treatment so that the therapeutic regime can be adjusted
in a timely fashion, i.e., during the same hospital
admission but not the same treatment session. Soon after
systemic administration of NACA, the ablated lesion
appears as a nonenhancing region relative to enhanced
normal tissue. On delayed imaging after several hours,
the characteristic striking contrast enhancement depicts
exactly the lesion of thermal coagulation necrosis in
contrast to unablated normal tissue and incompletely

Fig. 5. (A–C) T1-weighted MR images and (D)
corresponding cross-section from a rat-bearing
rhabdomyosarcoma in the liver 1 day after an
intended, incomplete RFA. Although just
discernible before contrast (A), 5 min after
intravenous injection of NACA, the RFA lesion
(arrow) is demarcated as a hypointense area
relative to strongly enhanced liver (B). The viable
tumor also enhances, but to a much lesser
degree, in comparison with normal liver at this
early stage. One day after NACA, the
characteristic contrast due to its specific effect
enables differentiation between ablated tumor
and marginal liver tissue and between viable
residual tumor and normal liver (C), as proved by
histomorphologic section (D), which shows the
effect of an in vivo ‘‘histochemical staining’’ MRI
technique.
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ablated viable tumor tissue as proved by histomorphol-
ogy (Figs. 4, 5).

Conclusion

RFA represents a local devitalizing therapy of an old
principle but with newly upgraded applicability due to
advances in technology. As a result of massive experi-
mental and clinical research over the past decade, it has
rapidly evolved into a major player in the armamentar-
ium of minimally invasive cancer therapies. Since the first
reports on hepatic RFA, many electrodes have been
commercialized and new models are expected to emerge
in the market. The same electrode and treatment algo-
rithms may yield coagulation lesions with a wide range of
volumes, resulting in varying reports from different
groups. Many coagulation lesions are incomplete or dis-
torted, especially with normal blood flow. This nonideal
reality calls for research focused on the development of
electrodes and methods that yield coagulations with more
reliable diameters and are less susceptible to the heat-sink
effect. RFA results in ‘‘thermal fixation’’ of the tumor
and a normal margin due to a sudden deposition of a
lethal temperature. This mechanism of injury has unique
features that distinguish it from classic coagulative
necrosis. Understanding of the underlying pathophysio-
logic process may facilitate identification and explain the
histomorphologic appearance of the RFA lesions at dif-
ferent stages. Aside from further improving guidance and
monitoring of the RFA procedure, the development of an
in vivo ‘‘virtual histochemical staining’’ technique for
noninvasive assessment of RFA therapy by imaging
modalities may prove crucial for an optimized treatment
protocol. Although research until now has focused on
ever larger lesions, there are now additional priorities
including increased reliability, more tailored ablation,
more accurate data generation, and standardization of
documentation and communication.
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