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Background: Radiofrequency (RF) ablation is used to obtain local control of unresectable
tumors in liver, kidney, prostate, and other organs. Accurate data on expected size and
geometry of coagulation zones are essential for physicians to prevent collateral damage and
local tumor recurrence. The aim of this study was to develop a standardized terminology to
describe the size and geometry of these zones for experimental and clinical RF.
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Methods: In a first step, the essential geometric parameters to accurately describe the
coagulation zones and the spatial relationship between the coagulation zones and the elec-
trodes were defined. In a second step, standard terms were assigned to each parameter.
Results: The proposed terms for single-electrode RF ablation include axial diameter, front

margin, coagulation center, maximal and minimal radius, maximal and minimal transverse
diameter, ellipticity index, and regularity index. In addition a subjective description of the
general shape and regularity is recommended.
Conclusions: Adoption of the proposed standardized description method may help to fill in

the many gaps in our current knowledge of the size and geometry of RF coagulation zones.
Key Words: Radiofrequency ablation—Tumor ablation—Size—Geometry—Liver—Kidney.

Radiofrequency ablation (RF ablation) is a valu-
able technique to obtain local control of unresectable
tumors in liver,1�7 kidney,8 prostate,9 and other or-
gans. An important clinical limitation is the inability
to monitor the growing coagulation zone accurately
during the procedure. Real-time monitoring of the
area of coagulation with ultrasound is unreli-
able.10�13 A too small coagulation zone will inevita-
bly lead to local recurrence.2 Although local
recurrence is lower than 10% in the best series,1,2,4�7

in other series it can be as high as 60%.14,15 On the
other hand, a too large coagulation zone may lead to
collateral damage.3,16�18 Therefore, exact knowledge
of the expected size and geometry of coagulation
zones is essential to correctly prepare and perform the
intervention. A recent review showed that much of
this crucial information is lacking for the current
commercial RF ablation electrodes.19 The aim of this
study was to develop and propose an optimal set of
descriptive parameters for different RF ablation
electrodes and protocols. The second aim was to
standardize description terminology.

MATERIALS AND METHODS

For experimental RF ablation, the optimal set of
descriptive parameters for coagulation zones created
by single and dual electrodes20 was developed. This
set was defined as the minimal information needed to
accurately document the coagulation zone size and
geometry. We adopted the principle that not only the
coagulation zone but also the spatial relationship of
the coagulation zone with the electrode(s) should be
described.
In a second step, a standard term was assigned to

each parameter. This term had to match predifined
quality criteria and was either chosen from the liter-
ature, if available, or newly created. Therefore, we
carried out a PubMed search for the period from

January 1, 1990, to May 1, 2005, using the key words
radiofrequency (or radio-frequency or radio fre-
quency) and liver (or hepatic or hepatocellular) on
articles written in English, French, German, Italian,
Spanish, Danish, or Dutch. Relevant papers were also
identified from the reference lists of the papers pre-
viously obtained through the search. Only papers with
a main aim to describ the in vivo and ex vivo coagu-
lation zones after a single RF ablation session in
animal liver with commerciel or experimental elec-
trodes were retained. Publications using both single
electrodes and multiple-electrode systems20 were in-
cluded. For each parameter, numerous synonyms
were found in the literature. In order to distill the most
unequivocal term for each parameter, we first rejected
synonyms that suggested a ranking of size, such as
‘‘long(est) axis’’ and ‘‘short(est) axis’’, because the
longest axis does not necessarily correspond to the
axial diameter; neither does the shortest axis always
correspond to the transverse diameter.19,21 We then
rejected synonyms that suggested a position in space,
such as ‘‘vertical diameter’’, because an RF ablation
electrode can be inserted in any direction in the lab-
oratory as well as in a patient. Thirdly, from the
remaining terms, the most ‘‘expressive’’ and ‘‘intui-
tively suggestive’’ term was selected. Finally, some
lacking terms had to be newly created.
For clinical RF ablation, applicability of these

experiment-derived definitions to the clinical setting
was studied.

RESULTS

Current Unstandardized Descriptive Parameters in the

RF Ablation Literature

Up to 12 synonyms were identified for describing
the same parameter of the coagulation zone. For
other valuable parameters, no terms at all were
available (Tables 1�5).
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Proposal for Standardized Description

Experimental RF Ablation: Minimal Descriptive
Parameters
In order to obtain accurate measurements that can

be related to the position of the electrode, the elec-
trode should be left in place until the liver is sectioned
(Table 1). The tines of expandable electrodes are
withdrawn into the shaft. With the knife shaving the
electrode, the liver is first cut along an axial plane,
which is defined as a plane along the electrode axis
(Fig. 1). Measurements are performed and pictures
are taken. All measurements include the central tan-
white zone, which corresponds to irreversibly dam-

aged tissue, and exclude the surrounding hypeaemic
red rim (for in vivo experiments), which corresponds
to viable tissue on acute histochemical staining.22

Coagulation zones that extend to the liver surface
should not be taken into account for measurement
since the obtained measurements represent an
underestimation of the size the coagulation zone
would reach in the middle of the parenchyma. Mea-
surements can be performed macroscopically using
calipers or on digital photographs using public
domain software packages such as ImageJ (National
Institutes of Health, Bethesda, MD; http://
www.rsb.info.nih.gov/ij/ [accessed May 16, 2006]) or
commercially available image analysis software.

TABLE 1. Description of experimental coagulation zones made by a single electrode

Current proposal Abbreviation Synonyms References

Measurements in axial plane
Axial diameter AD Length, longitudinal dimension/diameter, long axis diameter,

longest axis length, maximum diameter, short axis diameter,
shortest axis length, depth, height, vertical diameter,
vertical axis diameter

11, 12, 19, 21�47,
Curley unpublished
data

Front margin FM Relation to electrode tip, distance of ablation
beyond electrode tip

19, 22

Coagulation center CC
Measurements in transverse plane
Minimal transverse diameter TDmin Width, diameter, short axis diameter, shortest diameter,

shortest axis length, minimum diameter, long axis diameter,
longest axis length, depth, height, perpendicular diameter,
anterior-posterior diameter

11, 12, 19, 21�25,
27�33, 35�38, 40,
42�44, 46, 48�52

Maximal transverse diameter TDmax Idem as above 11, 12, 19, 21�25,
27�33, 35�38, 40,
42�44, 46, 48�55

Minimal radius Rmin 19
Maximal radius Rmax 19

General shape in axial plane
Ellipticity index EI Aspect ratio, shape value 19, 56, 57

Regularity of shape
in transverse plane
Regularity index RI

TABLE 2. Description of experimental coagulation zones made by a dual-electrode system

Current proposal Abbreviation Synonyms References

Measurements in axial plane
Axial diameter AD1, AD2 Longest diameter along electrode,

short axis diameter, vertical diameter
58�62

Front margin FM1, FM2
Mid-axial diameter MAD Shortest diameter at midpoint, shortest diameter

midway between the two electrodes, height
58, 60, 63, 64

Measurements in transverse plane
Inline transverse diameter ITD Long(est) axis diameter, length, overlapping width 58�63, 65
Lateral margin LM1, LM2
Perpendicular transverse
diameter

PTD1, PTD2 Short axis diameter, width 59, 61�63, 65

Mid-transverse diameter MTD
General shape in axial plane
Axial fusion index AFI

General shape in transverse plane
Transverse fusion index TFI
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Measurements should be performed before histolog-
ical tissue fixation with associated tissue shrinkage.
Second, both halves of the coagulation zone are cut

in the transverse plane, which is defined as the plane
perpendicular to the electrode (and to the axial plane)
at the site of the largest transverse diameter of the
coagulation zone. The two quarters nearest to the
electrode tip are then reassembled; measurements are
performed and pictures are taken.

Measurements in the Axial Plane (Fig. 2A)
The axial diameter (AD) is defined as the distance

in mm between the proximal and the distal edges of
the coagulation zone, in the axis of the electrode.

The front margin (FM) is defined as the distance in
mm between the distal edge of the coagulation zone
and the electrode tip. For expandable electrodes, the
tines are not taken into account.
The coagulation center (CC) is defined as the sec-

tion point of the transverse plane and the electrode
(axis). Its position is expressed as the distance in mm
of the CC to the electrode tip. In other words, its
position is measured as the distance between the
projection of the site of the maximal transverse
diameter on the electrode (axis) and the electrode tip.
For expandable electrodes, the tines are not taken
into account. The value is positive when the CC is
distal to the electrode tip, i.e., into the tissue, and

TABLE 3. Description of clinical coagulation zones made by a single electrode

Current proposal Abbreviation Synonyms References

Measurements in axial plane
of the electrode
Axial diameter ADel Length, longitudinal dimension/diameter,

long axis diameter, longest axis length,
maximum diameter, short axis diameter,
shortest axis length, depth, height,
vertical diameter, vertical axis diameter

11, 12, 19, 21�47,
Curley unpublished data

Measurements in transverse plane
of the electrode
Minimal transverse diameter TDmin

el Width, diameter, short axis diameter,
shortest diameter, shortest axis length,
minimum diameter, long axis diameter,
longest axis length, depth, height,
perpendicular diameter,
anterior-posterior diameter

11, 12, 19, 21�25, 27�33,
35�38, 40, 42�44, 46, 48�52

Maximal transverse diameter TDmax
el Idem as above 11, 12, 19, 21�25, 27�33,

35�38, 40, 42�44, 46, 48�55
General shape in axial plane
of the electrode
Ellipticity index EIel Aspect ratio, shape value 19, 56, 57

In clinical reports, ‘‘axial’’ and ‘‘transverse’’ describe the spatial relation with the axis of the electrode and not the spatial relation with the
axis of the patient. The exposant ‘‘el’’ is added to the abbreviations for clarity.

TABLE 4. Frequency of use of proposed descriptive
parameters in experimental RF ablation literature, single

electrode

Parameter Percentage No. studies

All studies 100% 50
Measurements in axial plane
Axial diameter 36% 18
Front margin 2% 1
Coagulation center 0% 0

Measurements in transverse plane
Minimal transverse diameter 10% 5
Maximal transverse diameter 24% 12
Minimal radius 0% 0
Maximal radius 0% 0

General shape in axial plane
Ellipticity index 10% 5

Regularity of shape in transverse plane
Regularity index 0% 0

TABLE 5. Frequency of use of proposed descriptive
parameters in experimental RF ablation literature,

dual-electrode system

Parameter Percentage No. studies

All studies 100% 10
Measurements in axial plane
Axial diameter 60% 6
Front margin 0% 0
Mid-axial diameter 40% 4

Measurements in transverse plane
Inline transverse diameter 70% 7
Lateral margin 0% 0
Perpendicular transverse diameter 0% 0
Mid-transverse diameter 60% 6

General shape in axial plane
Axial fusion index 0% 0

General shape in transverse plane
Transverse fusion index 0% 0
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negative when it is proximal to the electrode tip, i.e.,
on the electrode itself.

Measurements in the Transverse Plane (Fig. 2B)
Themaximal radius (Rmax) is defined as the maximal

distance in mm between the electrode shaft and the
edge of the coagulation zone in the transverse plane.
The minimal radius (Rmin) is defined as the minimal

distance in mm between the electrode shaft and the
edge of the coagulation zone in the transverse plane.
Maximal and minimal radiuses are not necessarily
perpendicular to each other.
The maximal transverse diameter (TDmax) is defined

as the maximal distance in mm between two opposite
edges of the coagulation zone in the transverse plane.
The minimal transverse diameter (TDmin) is defined

as the minimal distance in mm between two opposite
edges of the coagulation zone in the transverse plane,
measured on a line crossing halfway the line of the
maximal transverse diameter.
Both transverse diameters cross at the center of the

coagulation zone. This center does not necessarily
correspond to the site of the electrode shaft. The
maximal and minimal transverse diameters are not
necessarily perpendicular to each other.

General Shape in the Axial Plane (Fig. 2C)
The ellipticity index (EI) quantitatively describes

the general coagulation zone shape in the axial plane
and is calculated as the ratio of axial diameter (AD)
and mean transverse diameter ½ðTDmin þ TDmaxÞ=2�:

EI ¼ 2AD=ðTDmin þ TDmaxÞ

Provided that TDmin is close to TDmax, a ratio of 1.0
roughly corresponds to a spherical coagulation zone;
a ratio > 1.0, to an elliptical coagulation zone; and a
ratio < 1.0, to a flattened sphere.

Regularity of Shape in the Transverse Plane (Fig. 2D)
The regularity index (RI) quantitatively describes

the regularity of the coagulation zone shape in the
transverse plane and is calculated as the ratio of Rmin

and Rmax:

RI ¼ Rmin=Rmax

This way, a ratio close to 1.0 corresponds to a
nearly spherical coagulation zone. The lower the ra-
tio, the more irregular the coagulation zone (asym-
metrical, with indentations, or with extensions). For a
ratio inferior to 0.80, the (most frequently found)
type(s) of irregularity should be specified in the sub-
jective description (see further).

Dual-Electrode System (Table 2)
A dual-electrode system is defined as the combined

use of two single electrodes inserted into the target
tissue, either monopolar or bipolar.20 Only electrodes
inserted in parallel are considered here.

Preparation Technique and Definition of Planes
(Fig. 3)
The preparation technique is similar as described

above for single electrodes, except for the following
steps. The coagulation zone is first cut along the
axial plane, which is defined as the plane along both
electrode axes. Measurements are performed and
pictures are taken. Then, both halves of the coagu-
lation zone are cut in the transverse plane, which is
defined as the plane perpendicular to the electrode
axes at the site of the largest transverse diameter of
the coagulation zone in the axial plane. The two
quarters nearest to the electrode tip are then reas-
sembled; measurements are performed and pictures
are taken.

FIG. 1. Preparation technique and definition of planes for single-electrode RF ablation.
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Measurements in the Axial Plane (Fig. 4A)
The axial diameter (AD1, AD2) is defined as the

distance in mm between the proximal and the distal
edges of the coagulation zone, and in the axis of one
electrode. It is measured for both electrodes.
The front margin (FM1 and FM2) is defined as the

distance in mm between the distal edge of the coag-
ulation zone and the electrode tips. For expandable
electrodes, the tines are not taken into account. It is
measured for both electrodes.

The mid-axial diameter (MAD) is defined as the
distance in mm between the proximal and the distal
edges of the coagulation zone, in the axis halfway and
parallel to both electrodes.

Measurements in the Transverse Plane (Fig. 4B)
The inline transverse diameter (ITD) is defined as

the distance in mm between the edges of the coagu-
lation zone in the interelectrode axis in the transverse
plane.

FIG. 2. Description of coagulation
zones made by a single electrode.
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The lateral margin (LM1 and LM2) is defined as the
distance in mm between the edges of the coagulation
zone and the electrode in the interelectrode axis in the
transverse plane. It is measured for both electrodes.
The perpendicular transverse diameter (PTD1 and

PTD2) is defined as the diameter of the coagulation
zone perpendicular to the interelectrode axis where it
crosses an electrode in the transverse plane. It is
measured for both electrodes.
The mid-transverse diameter (MTD) is defined as

the diameter of the coagulation zone perpendicular to
the interelectrode axis halfway between both elec-
trodes in the transverse plane.

General Shape in the Axial Plane (Fig. 4C)
The axial fusion index (AFI) quantitatively de-

scribes the completeness of fusion of the coagulation
zones around each electrode in the axial plane and is
calculated as the ratio of the mid-axial diameter
(MAD) and the mean AD ½ðAD1 þ AD2Þ=2�:

AFI ¼ 2MAD=ðAD1 þ AD2Þ

This way, a ratio ‡ 1.0 corresponds to complete
fusion and a ratio < 1.0 to incomplete fusion.

General Shape in the Transverse Plane (Fig. 4D)
The transverse fusion index (TFI) quantitatively

describes the completeness of fusion of the coagula-
tion zones around each electrode in the trans-
verse plane and is calculated as the ratio of the
mid-transverse diameter (MTD) and the mean:
PTD ½ðPTD1 þ PTD2Þ=2�

TFI ¼ 2MTD= ðPTD1 þ PTD2Þ

This way, a ratio ‡ 1.0 corresponds to complete fu-
sion and a ratio < 1.0, to incomplete fusion.

Multiple (>2) Electrode System
A multiple (>2) electrode system is defined as the

combined use of more than two single electrodes
inserted into the target tissue.20 As these systems can
be used in a very versatile way, the description should
be individualized to each system, bearing in mind the
goal to offer to the clinician accurate and clinically
useful descriptive parameters, which should always
be related to the position of the electrodes. For
example, a coagulation zone created by three sym-
metrically inserted electrodes close to each other can
be described as if it was created by a single electrode.
A coagulation zone created by three symmetrically
inserted electrodes further from each other can be
described using elements of the proposed description
for a dual-electrode system. However, a coagulation
zone created by four or more electrodes, or asym-
metrically placed electrodes, requires an individual-
ized description.

Variability

Each parameter should be presented as mean
value ± standard deviation (SD). In papers that
compare different electrodes or protocols, the Coef-
ficient of Variation (CV) can be added: CV = SD/
mean (expressed in %).66

Subjective Description

In addition to the objective descriptive parameters,
a subjective description of shape (e.g., spherical,
conical, mushroom-shaped, teardrop-shaped, etc.) and
regularity (e.g., regular, with irregular spiky exten-
sions, etc.) is recommended (Fig. 5).

Pictures

The inclusion of pictures of the coagulation zone is
recommended, both in the axial and in the transverse

FIG. 3. Preparation technique and definition of planes for dual-electrode RF ablation.
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plane. Pictures shown should be representative of the
various sizes and shapes that were obtained with the
same electrode and the same protocol. All pictures
should be at the same scale and should include a
centimeter rule. Three-dimensional imaging recon-
structions35,67 of the coagulation zone are optional
but highly illustrative.

Clinical RF Ablation

Measurement Technique
In order to obtain accurate measurements that can

be related to the position of the electrode in the

clinical setting, a prospective registration of the posi-
tion of the electrode axis and the electrode tip during
the procedure is necessary. The inclination of the
electrode axis versus the three planes (transverse,
sagittal, and coronal) of the patient should be re-
corded. The position of the electrode tip should be
described as accurately as possible in relation to the
tumor border and other anatomical landmarks. This
information can be completed with imaging registra-
tion during the procedure, with the electrode in place.
After the RF ablation, the coagulation zone is

defined as the area without contrast uptake on con-
trast-enhanced computed tomography (CT) or mag-

FIG. 4. Description of coagulation zones made by a dual-electrode system.
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netic resonance imaging (MRI). The hyperaemic rim
is not taken into account.
In a first step, measurements are performed in the

axial plane, which is defined as a plane along the
electrode axis. For CT, this, often oblique, plane has
to be reconstructed postimaging using multiplanar
reconstruction; a technique which requires a dedi-
cated acquisition protocol with overlapping thin
(millimetric) slices, as commonly achievable with re-
cent multidetector helical CTs. The prerecorded
inclination values of the electrode axis versus the
three patient planes are used for this reconstruction.
Measurements of the coagulation zone are performed
digitally, and imaging in the axial plane is recorded.
With MRI, the plane along the electrode axis can be
obtained either through direct oblique acquisition or
through secondary multiplanar reformations from
transverse thin slices.
Second, measurements are performed in the

transverse plane, which is defined as the plane per-
pendicular to the electrode (and to the axial plane) at
the site of the largest transverse diameter of the
coagulation zone. Measurements of the coagulation
zone are performed digitally, and imaging in the axial
plane is recorded.

Measurements (Table 3)
Definitions of geometric dimensions are the same

for the experimental and the clinical settings. How-
ever, as imaging without the electrode in place is

inevitably less accurate than sectioning with the
electrode in place, the number of reliable measure-
ments in the clinical setting is smaller. For the same
reason, practical application of the geometric defini-
tions in the clinical setting is limited to single RF
ablation sessions with a single electrode. In the
Material and Methods section of clinical reports, it
should be clearly stated that the definitions of ‘‘axial’’
and ‘‘transverse’’ describe the spatial relation with the
axis of the electrode and that they should not be
confounded with the axial and transverse planes of
classical CT or MRI imaging, which describe the
spatial relation with the axis of the patient. Further,
in clinical reports, the exposant ‘‘el’’ is added to the
abbreviations for clarity.

Frequency of Use of Proposed Descriptive Parameters

in Experimental RF Ablation Literature

Sixty papers with the main aim describe single-
session coagulation zones in animal liver with com-
mercial or experimental electrodes were identified: 50
for a single electrode (Table 4).12,21�41,48�55,68�86

Curley (unpublished data) and 10 for a dual-electrode
system (Table 5).59�65,87,88 For single-electrode
experiments, the most essential descriptive parame-
ters, i.e., the axial diameter and the minimal trans-
verse diameter, were available in only 18 and 5 of the
50 papers, respectively. For dual-electrode experi-
ments, the axial diameter, the inline transverse

FIG. 5. Subjective description of coa-
gulation zones: some examples.
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diameter and the lateral margin were available in only
6, 7, and 0 of the 10 papers, respectively. Forty of 60
papers described in vivo experiments. Only 15 of
these 40 papers specified whether the red rim was
excluded from the measurements: in 13 papers it was
excluded, while in 2 papers the red rim was included.

DISCUSSION

In RF ablation of liver tumors, precise tailoring of
the size and shape of the coagulation zone is impor-
tant. The coagulation zone should be large enough to
encompass both the tumor and a safety margin of 1
cm at all sides.15,16,89 On the other hand, it should be
small enough to avoid collateral damage.17 Real-time
ultrasound monitoring of the coagulation zone is
unreliable.10�13 Diameters measured by ultrasound
show a poor correlation with the pathological diam-
eter,10�12 with overestimation of the minimal trans-
verse diameter and underestimation of the maximal
transverse diameter of the coagulation zone.13

MRI and elastography thermometry are promising
but still experimental methods for real-time moni-
toring of tissue temperature and, indirectly, the
development of the coagulation zone.90�92

Therefore, knowledge of the expected size and
shape of a single-session coagulation zone and its
relation to the electrode tip is essential.
A recent review showed that much of this crucial

information is lacking for current commercial RF
ablation electrodes.19 This paucity of data was
incriminated explicitly as cause of several local
recurrences in a recent study.93 The situation is even
worse when experimental electrodes are included in
the analysis, as shown in the present study (Tables 4
and 5). The development of a minimal set of
descriptive parameters and the corresponding ex-
pected variation for each RF ablation electrode and
protocol may improve the results of RF ablation and
will help to avoid the loss of some of its credibility by
poor results due to brochure-based overoptimistic
expectations of a perfectly spherical coagulation zone
with a constant diameter.42,94

This report should be seen as complementary to
several recent efforts to standardize reporting on RF
ablation. A paper from the International Working
Group on Image-Guided Tumor Ablation (IWGIG-
TA) proposes standardized terms for general aspects
in the broad field of image-guided tumor ablation.95

Other papers specifically focused on standardization
of one particular aspect of RF ablation, such as a
scoring system for complications96 and a logical ter-

minology for RF electrodes and RF electrode sys-
tems.20 All these efforts are crucial to improve
scientific communication in the field of RF ablation.
The proposed terminology has been developed to

describe RF coagulation zones but can also be ap-
plied to coagulation zones created by other interstitial
techniques that use an applicator, such as microwave
antennas, laser fibers, and cryoprobes.

Limitations

The current proposal deals only with a standard-
ized macroscopic description of coagulation zones.
The exact generator type, electrode type, and treat-
ment algorithm should be documented as well. In
order to reliably compare coagulation zones obtained
by different electrodes and protocols, a standardized
experimental setup is necessary, e.g., regarding the
time interval between RF ablation and the measure-
ments; but this falls out of the scope of this report.
The proposed standardized description method

may give the impression that size and geometry of
coagulation zones are very predictable. In fact, as
several authors have recently shown,19,67,94,97 vari-
ability of coagulation size and geometry remains an
important problem, even when using standardized
treatment protocols. Description of this variability is
an integral part of the current proposal and should be
considered as important as the description of the
‘‘mean’’ size and geometry.
The feasibility of the proposed algorithm for

reconstructing the original axes of the electrode on
follow-up CT scans needs to be assessed.

Predictive Value of Experimental Measurements

The predictive value of data on size and geometry
obtained in animal experiments using the proposed
description method is high only for the experimental
setting in which the data were measured. Size and
geometry obtained in ex vivo experiments tend to
overestimate the coagulation diameter and volume
and underestimate variations in geometry compared
to in vivo experiments.34 Results from ex vivo
experiments are useful only as a first step to optimize
RF technology in the laboratory. Before clinical
application of a new electrode or protocol, coagula-
tion size and geometry should always be assessed in in
vivo experimental studies. Even in vivo, the results
obtained in the ideal situation, i.e., in the middle of
the parenchyma, are not necessarily predictive for the
result near a large vessel or near the capsule. Fur-
thermore, findings in animal models should be com-
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pared to those observed in patients. The in vivo re-
sults of RF ablation in healthy animal liver may not
be the same as when applied to a tumor and a sur-
rounding rim of nontumorous liver in a patient. The
tumor may be hypo- or hypervascular. It may also
have different electrical and thermal characteristics as
well as a different sensibility to the generated heat.
The liver itself may be altered by fibrosis, cirrhosis, or
chemotherapy-induced fatty changes. Hydration may
differ between patients. The results of RF ablation
obtained in one organ are very different from results
in other organs, due to differences in vascularity and
composition (water, salts, lipids, and proteins). There
are well-known differences for kidney (higher salt
content and radial blood flow) versus liver (greater
uniformity) versus breast or prostate (higher lipid
content, i.e., more insulating capacity).98

Preparation Technique for Experimental

Measurements

The proposed preparation technique carries the
advantage that the exact relation of the edges of the
coagulation zone to the electrode shaft and the elec-
trode tip can be recorded. This is difficult to impos-
sible if the electrode is retracted from the tissue prior
to cutting the tissue into slices. Those slices will only
by chance be perfectly perpendicular to the electrode
track or parallel to the axial plane.
The border of the central tan-white zone should be

taken as the border of the coagulation zone. Within
this area, all tissue has been shown to be irreversibly
damaged.22 The tannish color is due to differential
light absorption and reflection by denatured proteins.
The surrounding hyperaemic red rim should be ex-
cluded from the measurements. This rim still contains
viable cells, as proven by histochemical staining and
intracellular adenosine triphosphate measurement
techniques in the acute phase,20 though some of them
may die later (ATP).
Measurements should be performed before histo-

logical tissue fixation with associated tissue shrink-
age.

Standardization and Interpretation of Terms

Numerous and often contradictory synonyms have
been used in the literature for the terms that have
been defined in this proposal (Tables 1 and 2). In
order to distill the most unequivocal and universally
acceptable terms, we first rejected synonyms that
suggested a ranking of size, such as ‘‘length’’ and
‘‘width’’, ‘‘long(est) axis’’ and ‘‘short(est) axis’’,

‘‘minimum diameter’’ and ‘‘maximum diameter’’,
because the longest axis does not necessarily corre-
spond to the axial diameter; neither does the shortest
axis always correspond to the transverse diame-
ter.19,21 We then rejected synonyms that suggested a
position in space, such as ‘‘vertical diameter’’,
‘‘height’’, and ‘‘depth’’, because an RF ablation
electrode can be inserted in any direction in the lab-
oratory as well as in a patient. Next, from the
remaining terms, the most ‘‘expressive’’ term was
selected, as was the case for the ‘‘ellipticity index
(EI)’’ which is more ‘‘intuitively suggestive’’ than
‘‘aspect ratio’’56 or ‘‘shape value’’.35 Finally, some
lacking terms had to be newly created.
For the interpretation of these terms, we adopted

the principle that all terms describe the spatial rela-
tionship of the coagulation zone with the electrode
(and not with the patient nor with the treated organ).
Therefore, ‘‘axial’’ should be interpreted as ‘‘in the
axis of the electrode’’ and ‘‘transverse’’ as ‘‘perpen-
dicular to the axis of the electrode.’’

Volume Measurements

In many experimental papers, the description of a
three-dimensional coagulation zone is reduced to a
single value for its volume. This may be useful in the
laboratory to optimize energy deposition but is not
helpful to plan RF ablation as it leaves the physician
ignorant about the size and shape of the coagulation
zone. On the other hand, calculating expected vol-
umes of coagulation zones based on available data on
expected axial and transverse diameter can be useful
to prevent liver failure when planning RF ablation in
patients with limited liver reserve and/or extensive
tumor burden. For a perfect ellipsoid, volume is
calculated as ðp=6Þ � AD � TDmax � TDmin.

Random Diameters

In many papers, two or three dimensions of a
coagulation zone are measured and reported, e.g., the
‘‘longest diameter’’ and the ‘‘shortest diameter,’’
without reference to the position of the electrode.
Especially in the clinical setting, we acknowledge that
measuring random diameters is far easier than mea-
suring dimensions in relation to the electrode as de-
scribed in the above proposal. However, while
random diameters may be useful for volume calcu-
lation, they are of little value to accurately describe
coagulation zone geometry, and they may even be
misleading. Although for many electrodes the longest
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diameter of the coagulation zone corresponds to the
axial diameter, for other electrodes it corresponds to
the transverse diameter.19,21

Front Margin

There are no data available to the physician on the
front margin, except very recently for the cooled
electrode.22 This information, however, is essential to
calculate whether the tip of the electrode should be
inserted up to the center of a tumor or rather up to
the posterior edge or even behind this edge, to
ascertain the safety margin.
Awaiting reliable data, the ‘‘best guess’’ of the

front margin for straight electrodes may correspond
to half the difference between the axial diameter and
the length of the noninsulated tip of the electrode,
assuming that the coagulation zone is distributed
symmetrically at the front and at the back of the
active tip.
For expandable electrodes, no ‘‘best guess’’ is

possible. For some expandable electrodes, the center
of the coagulation zone may correspond to the end of
the electrode shaft, while for other expandable elec-
trodes, the center of the coagulation zone is probably
deeper into the tissue than the end of the electrode
shaft.99

Coagulation Center (Fig. 6)

Many coagulation zones are not spherical but
rather mushroom- or cone-shaped.35 Moreover, an
elongation of the coagulation zone along the elec-
trode track is often observed. In other words, the
transverse plane, defined by the maximal transverse
diameter in the axial plane, is not always situated
halfway between the proximal and distal edges of the
coagulation zone in the axial plane. The expected
location of the maximal transverse diameter in rela-
tion to the tip of the electrode may prove to be a very
useful parameter when planning RF ablations in
patients.

Maximal and Minimal Transverse Diameter

In some papers, only the maximal transverse
diameter of a coagulation zone is measured and
reported. The maximal diameter is important to
prevent complications by too large coagulation
zones17 but is oncologically irrelevant. In other pa-
pers, only the mean of the maximal and minimal
transverse diameters or the mean of two perpen-
dicular transverse diameters is reported, which again
represents a loss of essential information. Knowl-
edge of the minimal diameter is essential to be sure
to cover the tumor and a margin of 1 cm at all
sides.

Maximal and Minimal Radius

Knowledge of the radius is more accurate than
knowledge of diameter as the radius equals half of the
transverse diameter only in symmetrical coagulation
zones. Up to 60% of coagulation zones may be
asymmetrical.12 A minimal diameter that has been
obtained by measuring asymmetrical coagulation
zones represents an overestimation of minimal radius
and misleads the clinician. Up to now, no data on
maximal and minimal radiuses of coagulation zones
have been available for any electrode. Values for
maximal and minimal radiuses allow calculation of
the useful RI (see below).

Ellipticity Index

The EI quantitatively describes the general coagu-
lation zone shape in the axial plane. The higher the
index, the more elliptical the coagulation zone, as
suggested by the name.19

Regularity of Shape in the Transverse Plane

The regularity index (RI) quantitatively describes
the regularity of the coagulation zone shape in the
transverse plane. It is very easy to calculate and
clinically relevant. An increasing number of reports

FIG. 6. Importance of description of
the position of the coagulation cen-
ter. These three coagulation zones are
quite different despite having the sa-
me axial diameter, transverse diame-
ter, and frontal margin. Addition of
the position of the coagulation center
(arrow) increases accuracy of descri-
ption.
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stress the fact that many coagulation zones are less
regular than previously assumed.19,21,34,35,75,94,97 The
numerator of the regularity index is the minimal ra-
dius, which is related to the risk of local recur-
rence,15,21,75,97 while the denominator is the maximal
radius, which is related to the risk of collateral
damage.17

A ratio close to 1.0 corresponds to a nearly
spherical coagulation zone. The lower the ratio, the
more irregular the coagulation zone. Because the risk
of local recurrence and collateral damage is different
for asymmetrical coagulation zones, zones with
indentations, or zones with extensions, the (most
frequently found) type(s) of irregularity should be
specified for RI inferior to 0.80 in the subjective
description (see further).
The heat sink effect is common to all electrodes

when used with normal blood flow and causes local
indentations of the coagulation zone near blood
vessels.19 For coagulation zones created by expand-
able electrodes, superficial to deep clefts can be
present between tines.19,75 For coagulation zones
made by wet electrodes or its combinations (cooled-
wet, expandable-wet, bipolar-wet)20 or by saline-en-
hanced RF ablation,20,100 spiky extensions of the
coagulation zone due to irregular spread of saline
have been observed.34,35,100

Alternative scoring systems that have been used in
the literature to quantify (ir)regularity of coagulation
zones include:

� The ‘‘Chinn score,’’ which quantifies clefts between
tines on a scale from 0 to 7 but is applicable only to
expandable electrodes.19,75

� The ‘‘regularity ratio,’’ which quantifies predict-
ability of coagulation zones on a scale from 0 to 3
but appears to be very subjective.64

� The isoperimetric quotient or ratio = 4p A/P2,
where A is the area and P is the perimeter.75,101

This score is objective and applicable to all kinds of
distortions. Calculating this score, however, is
more time consuming as it needs computer analysis
of digitalized pictures. Further, it does not allow
for discrimination between a clinically acceptable
coagulation zone with a saw-tooth edge but min-
imal variation of the radius and a clinically
unacceptable coagulation zone with a smooth edge
except for a single deep cleft.

Fusion Index for a Dual-Electrode System

Apart from the objective measurements of the
coagulation zone, the single most important

information needed by the clinician is whether coag-
ulation between the two electrodes is complete or not,
i.e., whether the coagulation zones around each
electrode are completely fused.

Variability

Some reports give only mean values for certain
measurements. The standard deviation is essential to
assess the range of coagulation zone sizes that one
can expect. In a Gaussian distribution, the mean
value ± 1 SD includes 68% of observations and the
mean value ± 2 SD includes 95% of observations. In
other words, the minimal coagulation zone size that
can be expected with 97.5% confidence equals the
mean size minus 2 standard deviations and the
maximal coagulation zone size that can be expected
with 97.5% confidence equals the mean size plus 2
standard deviations.
Some papers confuse the reader by describing the

standard error of the mean (SEM) instead of the SD.
SEM = SD/

ffiffiffi

n
p

, with n = number of observations.
The SEM is a measure for the reliability of the esti-
mation of the mean value of a population by the
observed mean value in a sample. It is not at all a
measure of variability of the observed values around
the observed mean. The SEM is by definition (much)
smaller than the SD. Use of the SEM instead of SD
gives a false impression of high reproducibility to the
statistically less trained reader.

Subjective Description (Fig. 5)

On top of the objective descriptive parameters, a
subjective description of shape and regularity is rec-
ommended. Examples of shape description include
terms such as ellipsoid,35 oval,68 ovoid,12 conical,56,68

inverted conical,35 pear-shaped,25 mushroom-
shaped,73 droplet-shaped,73 teardrop-shaped,94

dumbbell-shaped,25,56 and butterfly-shaped 87.
For single-electrode coagulation zones with an RI

< 0.8, the (most frequently found) type(s) of irreg-
ularity should be specified: asymmetrical with
indentations (including cloverleaf-shaped27 or with
deep clefts78) or with irregular (flamelike or spiky)
extensions.100 Subjective descriptions of shape and
regularity may at first glance seem to be imprecise
and unscientific. They are, however, a powerful
warning to the clinician against a too optimistic
expectation of a regular and spherical coagulation
zone for the electrodes and protocols that have been
tested.
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Pictures

‘‘A picture tells more than a thousand words’’ is
true in this context too. It completes the numerical
and subjective description. A picture can disclose an
irregular shape that was not obvious with objective
measurements. Three-dimensional imaging recon-
structions35,67 of the coagulation zone are even more
illustrative.

CONCLUSIONS

Hopefully, the widespread adoption of this pro-
posed minimal set of descriptive parameters will soon
fill in the many gaps in our knowledge about the size
and geometry of coagulation zones.
Companies are strongly encouraged to provide this

set of data for all RF ablation electrodes that they
have or intend to bring on the market. In the liver,
these data should be produced with and without the
Pringle maneuver, both within a predefined short
distance to large intrahepatic vessels as well as in
hepatic parenchyma without nearby vessels.
A better recognition of shortcomings in size, shape,

and regularity of coagulation zones produced by the
actual RF ablation electrodes may lead to less local
recurrence and collateral damage and may boost re-
search to improve these features.
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